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Path and surface integrals

Recall that we can calculate the length of a curve C' = {(z, f(x))
a <z <b}in R? via an integral of the form

b
L:/\/l—l—(f/(ﬂf))Q dx.

In applications it is often necessary to find lengths of curves on more com-
plicated surtaces.

For example, how could we determine the length of a path taken by a
climber as they scaled the side of a mountain?
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Unless the mountainside is particularly simple, the techniques we know
about so far are not sufficient to enable us to calculate the length of the
route taken.

Moreover, can we evaluate the surface area ot the mountain itself?

Such questions require knowledge of the methods of path integrals and
surface integrals.

Before we begin to tackle these new types of integrals it is important to
revise our knowledge of parametric representations of curves and surfaces.

It will turn out that determining suitable parametric forms is the starting
point of path and surface integrals, and the ability to find such parametri-
sations 1s one that needs to be mastered.
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Parametric forms of paths

Given some curve in R? or R® an object travels along in the time ¢ € a, bl,
its location can be determined by finding the position vector r(t).

We can determine the velocity v(t) of the object by finding the tangent to
the curve. Then we have the “position” vector:

r(t) = (z,y) n R®> |, r(t)=(z,y,2) in R,

and the “velocity” vector:

dr
v(t) = —(t) = 1(t),
(1) = (1) = ¥(t)
where we have used the usual notation of a a dot instead of a dash to
represent derivatives with respect to time. By varying ¢ from a to b we

obtain a function r(t) that is called the parametric form of the curve. We
denote by C' the curve in its entirety, that is, C' = {r(t)|t € [a, b]}.
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Example

To find a parametric form of the straight line from (1,2) to (3,6), we
try to find functions x(¢) and y(¢) that together form the components of
the parametric form r(t) = (x(t), y(t)).

Both of them will be linear and therefore of the form:

r(t) =z +mgt , y(t) =y + myt.

We can choose any closed ¢ interval over which our parametrisation is to
be applied — suppose we take 0 < t < 1 as the domain of the function.
Then t = 0 corresponds to the starting point (1,2), which determines the
values 2(0) = g = 1 and y(0) = yp = 2. And with ¢ = 1 corresponding
to the end point (3, 6) we must have and therefore x(1) = 3 and y(1) = 6,
implying my = 2 and my = 4.
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Therefore a parametric form of the line is:

(%) 1+ 2t
r(t) = = , tel0,1).
y(t) 2+ 4t

This simple example highlights several important points:
1. A parametric form of a curve is a vector-valued function r(¢).

2. We need to specify the domain on which r(t) is defined: t € [a, b|.

3. The range of r(t) includes both the starting and end points: r(a) is the
starting point and r(b) is the end point.
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Example

To find a parametric form of the circle 7>+ y2 = 1, in Cartesian co-
ordinates we would need to express the circle in two different segments

y=+V1—-22 y=—-V1-—-2a2

If we further require that a particle moves once around the circle starting
and ending at (1,0), we can write it as the union of these rather messy
parametric forms:

t

1 _
r(t) = _\/1_(1 , tel0,2],

_ t>2_

t —1
r(t) = , te]0,2].
V-

t— 1)
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On the other hand, in polar coordinates the circle can be expressed in a
much easier single form:

cost
r(t) = , te|0,2n].
_sin t_

So, for a curve C' given by an explicit equation y = f(x) on the domain
xr € D, if we let (xq,yg) be the starting point and (x1,y1) the end point
of the curve, then a parametric form r(¢) of C' can be found by choosing
t = x, where t € |xg,x1]. Then

t
r(t) = ;€ |zg, ).
f(E)]
However, remember that parametric forms are not unique representa-
tions of curves, and the simplest parameterisation may not necessary be

the most appropriate one.

Example set 2 — week 10
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Length of curves

The following theorem explains how parametric forms can be used to de-
termine lengths of curves:

I[f C' is given in parametric form by {r(t)|la < ¢t < b}, and the vector
function r(t) is differentiable in (a,b) and continuous on |a, b], then the

length L(C') of C'is given by

b b
dr . .
a a
. dry .
where r(t) = (r1(t), -+ ,rp(t)), 7 = o and p = 2 or 3 according to the

ambient space being R? or R>.
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See the Unit Reader for a derivation of this result using Riemann sums.

Example

To determine the length of the spiral S given by the parametrisation
r:[0,27] — R, where r(t) = (cost, sint, t), we compute

r(t) = (—sint, cost, 1),

and therefore

B(6)] = \/(—sint)? + (cost)? + 12 = V2,

for all t. Hence the length of the spiral is

L(S) = /\/idt = V2[5 = 2v/2r.
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Example

Find the length of the part of the astroid 22/ 3+y2/ 3 = 1 which is contained
in the second quadrant (z < 0, y > 0).
Y
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2 2
Note that %/ + y*/% may be written (/)" + (5'/)", 5o that #1/3

and yl/ 3 are on a circle of radius 1, so we can use the parametrisation

_5,;1/ 3 [ cost (o0 1
— = r(t) = ]
sin t Sin”

1
y!/?

Since our curve is in the second quadrant, it goes from (0,1) to (—1,0)
which corresponds to 7/2 <t < 7. Also,

| 3 C082 tsint]
r<t) — ) 2 )
| 3sin“tcost

SO

| = \/9 cos? tsin? t(cos? t +sin?t) = V9 cos2tsin?t = —3costsin .
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Notice that the quantity |r| must be positive and that for the range
/2 <t < 7 it is the case that cost < 0 and sint > 0, so costsint < 0.

Hence why we take the negative square root!

Then

—3costsintdt

[sm t} :/2

0-1=3

b‘

|
=
E\ﬁ

DO | l\DIOJ

Example set 3 — week 10
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Path integrals of a function

Let f(z,y) or f(x,y,2) be a continuous function defined on a smooth
curve C' parameterised by r(t) for t € [a, b|.

This means that f can be evaluated for all t € l|a,b] and we require
the function to be continuous in ¢t. Moreover we require that r exists and
1S continuous.

We can now define path integrals:

We define the integral of a function f(x,y) or f(x,y,z) over a path
C' =A{r(t)la <t < b} to be

/fds—/f ()| dt.
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We can think of this integral (sometimes also called a line integral) as an
integration of f along a special path.

We need to evaluate f on the path, which we indicate by f(x(t),y(t))
or f(x(t),y(t), 2(t)).

Example

Evaluate the path integral / x + vy + zds where C' has the parametric
C

equation
r(t) = (cost,sint,t), 0 <t <.

First we calculate the tangent vector:

i(t) = (—sint,cost,1) = [t(t)] = V2.
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31

Now our function is f(x,y,2) = x +y + 2, and to evaluate it on the path

we substitute the components of r:
f(x(t),y(t), z(t)) = cost +sint + t,

and hence
T

/x+y+zd8—/(cost+sint+t)\/§dt

C

-

_ g
— \/5 sint—cost+§

Example set 4 — week 10

70
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%

&4 AUSTRALIA

MATH1011 MULTIVARIABLE CALCULUS
LECTURE NOTES WEEK 11

FY¥] THE UNIVERSITY OF
WESTERN SCHOOL OF MATHEMATICS AND STATISTICS

Parametric forms of surfaces

While we only need one parameter to describe a path in space, a sur-
face is specified by an equation involving two parameters. As a familiar
example we might want to think about the coordinates we use to describe
our location on earth:

(x,y,2) = f(u,v) = (cosusinv, sinusinv, cosv ).

This function gives a point on a sphere of unit radius, where u represents
longitude, v represents latitude.
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This is obtained using spherical coordinates by setting p = 1, u = 6 and

v = Q.

80N

60 N

40N

20N

208

40 S

60 S

80 S

150 W 100 W 50 W 0 50E 100 E 150 E

(u,v) € R? o (x,y,2) € R’
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Using the method we have learned for paths, we can define a position
vector and its associated tangent vectors:
(x,y,2) = S(u,v),

0S
Su(u,v) = %(u, v),

0S
S”U(ua U) — %(ua U)'

Since the surface S depends on two parameters, we obviously have two
tangent vectors at each point (u, v).

We remember that it is often useful to work with the vector that is normal

to the surtace:

In general this vector is a function of v and v.
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Example

To find a parametric form of the surface S given by z = z° —y?’, 0<z<1
and 0 < y < 4, we see that z depends only on two variables (x and y)
and therefore we can immediately conclude:

r=u , Y=v |, 2 =u? — .
Therefore
S(u,v) = (u,v,u’ —v) , 0<u<l , 0<ov<4
Example

Recall from last week that the Cartesian equations describing a cone with
height h, basis radius a and apex at (0,0,0) was
2

2
x2+y2:a2(1—ﬁ> : 0 <z <h.
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In cylindrical coordinates (with x = r cos# and y = rsin @) we have

r:a(1_%), 0<f<2r, 0<z<h

As we can see the radius r depends on z but # and z do not depend on
any other variable.

This makes z and 6 our favoured choice for 4 and v. We get:

r = Qa — — | COSUV = Qa — — | SINnv < =U
h Y y h Y

S(u,v) ( (1——) COS U a(l —%) sinv,u),
0<w

0 <u<h, <9

Example set 1 — week 11
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Areas of surfaces

We will generalize the techniques of path integrals to show how we can
evaluate areas of surfaces and double integrals of functions defined over
surfaces which are embedded in R”.

Let S(u, v) be a differentiable (and hence continuous) surface in R” (de-
fined on some domain D : a < u <b, ¢ < v <d). We denote

S={S(u,v)|a<u<b c<v<d}

and we would like to determine the surtace area of S.

At each point (u,v), the derivatives Sy, and S, exist and hence the nor-
mal vector

N(u,v) = Sy X Sy,

is well-defined.
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Theorem

Let .S be the surface given by a continuously differentiable parametrisation
S = {S(u,v)| (u,v) € D} for some region D in the u, v-plane.

Then the surface area of S, denoted by Area(.9), is equal to

// 0S 88

See the Unit Reader for a proof of this theorem using Riemann sums.

dudv—/ IN(u,v)|dudv.

This means that we can find the area of a quite complicated surface S
if it can be conveniently parameterised in terms of u and v.
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Then, rather than trying to evaluate the area of S directly, we instead
calculate the integral of

0S 9 0S
ou  Ov

)

over an appropriate region D.
Example

To find the area of the part of the surtace z = x + y2 that lies above
the triangle with vertices (0,0), (1,1) and (0, 1), we use u = x and v = y
to parametrise the surface:

S(u,v) = (u,v,u+ v2),

and
D ={(u,v)]0 <v<1,0<u<Lv}.
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Uz\

1 e
D

® >
1 U

Then the tangent vectors are Sy, = (1,0,1) and Sy, = (0, 1, 2v) and hence
ik

S, xSy=det [10 1| =(=1,-20,1),

01 2v

which implies

Su X Sy = V2 + 402,
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Therefore we get

(V)

1
//\/2+4212dudv
0 0

1
:/v\/2+4v2dv
0

A

1 2,3/2] !
V6 V2
2 6’

where we have used the substitution w = 24 4v° to solve the last integral.
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Example

Find the surface area of the torus (doughnut)
S(a,0) = ((b+ acosa)cosb, (b+ acosa)sinb, asina),
where 0 < a < 2w, 0 <6 < 2.

Note that b is the radius of the circular centre of the torus and a is the
radius of a vertical cross-section of the torus.

These two numbers are constant and a < b.

Our two parameters are €, the angle on the torus around from x = 0,
and «, the angle on this around from z = 0.
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We get

Sq = (—asinacosf, —asinasinf, a cos )

= a(—sin acos 6, — sin asin 0, cos a),

and
Sp=(—(b+acosa)sinf, (b+ acosa)cost,0)
= (b+ acosa)(—sinf, cosh,0).
Then
i j k
N =S, xSgp=a(b+acosa)det | —sinacosf —sinasinf cos
| —sind cos 0 0

= —a(b+ acosa)(cos acos @, cos asin 0, sin ),
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and so

IN| = alb+ acos &\\/GOSQ 0 cos? o + sin?  cos? o + sin® a

= a(b+ acos a).

Note that b —a < b+ acosa < b+ a, and so 0 < b+ acos a.

We can now compute the surface area:
2w 27

A= //a(b + acosa) df da = 2ma [bac + asin a]gﬂ — dr°ab.
0 0

Note that this is the product of the perimeters of two circles of radii a and

b.
Example set 2 — week 11
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Surface integrals of a function

Let f(x,y, z) be a continuous function defined on a smooth surface
S = {S(u,v)| (u,v) € D},
parametrised by a continuously differentiable parametrisation S for some

region [ in the u, v-plane.

This means that f can be evaluated for all (u,v) € D and we require
the function to be continuous in both u and v.

These assumptions imply that the normal vector N exists and is con-
tinuous.

We can now define surface integrals.
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We define the integral of a function f(x,y, z) over a surface

S = {S(u,v)|(u,v) € D},

to be
[ ras= [ [ #8(w.) N o) dud,
S D
where 95 95
N(u,v) = %(u,v) X %(u, V).

This integral can be regarded as an integration of f(x,y, z) on a special
surface 5.

We need to evaluate f on the surface, which we indicate by

fla(u, v),y(u,v), 2(u,v)).
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Example
Evaluate the surface integral
/ / xy dS,
S
where S is the triangle with vertices (1,0,0), (0,2,0) and (0,0, 2).
The surface is contained in a plane so we can parametrise it as follows:

S(u,v) =(1,0,0) + u(—1,2,0) + v(—1,0,2) = (1 — u — v, 2u, 2v).

The points (1,0,0), (0,2,0), (0,0,2) correspond respectively to (u,v) =
(0,0),(1,0),(0,1), so the domain is

D={(u,v)[0<u<1, 0<v<1—u}.
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We compute

oS 0SS
_X_

ou Ov = (=1,2,0) x (=1,0,2)] = |(4,2,2)] = 2\/6,

and

f(S(u,v)) = (1 —u —v)(2u).

So the surface integral is

//xde/llfu(luv (2u)(2V/6) dv du
S 0 0

- o7 1—u

|
2\/6/2u (1—u)v—% du
0
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