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Di↵erential equations

In a vast number of situations a mathematical model of a system or process
will result in an equation (or set of equations) involving not only functions
of the dependent variables but also derivatives of some or all of those func-
tions with respect to one or more of the variables. Such equations are
called di↵erential equations.

The simplest situation is that of a single function of a single indepen-
dent variable, in which case the equation is referred to as an ordinary
di↵erential equation.

A situation in which there is more than one independent variable will
involve a function of those variables and an equation involving partial
derivatives of that function is called a partial di↵erential equation.

MATH1011 Multivariable Calculus | Lecture Notes Week 11 22

Notationally, it is easy to tell the di↵erence. For example, the equation

@f

@x
+
@f

@y
= f2,

is a partial di↵erential equation to be solved for f (x, y), whereas

d2f

dx2
+ 3

df

dx
+ 2f = x4,

is an ordinary di↵erential equation to be solved for f (x).

The order of a di↵erential equation is the degree of the highest deriva-
tive that occurs in it. The partial di↵erential equation above is first-order,
while the ordinary di↵erential equation is second-order.

An important class of di↵erential equations are those referred to as linear,
where neither the function nor its derivatives occur in products, powers or
nonlinear functions.
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Solutions of di↵erential equations

When asked to solve an algebraic equation, for example x2 � 3x + 2 = 0,
we expect the answers to be numbers.

The situation with di↵erential equations is much more di�cult because
we are being asked to find functions that will satisfy the given equation.

Unlike algebraic equations, which only have a discrete set of solutions (for
example, x2 � 3x + 2 = 0 only has the solutions x = 1 or 2), di↵erential
equations can have whole families of solutions.

For example, y = Ce3x satisfies the ordinary di↵erential equation
dy

dx
= 3y,

for any value of the constant C.
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Verification of solutions of di↵erential equations

To get a feel for things (and to practice our algebra) we will have a quick
look at the relatively simple procedure of verifying solutions of di↵erential
equations by way of a few examples.

Example

To verify that

y(x) = C1e
2x + C2e

�2x � 2 cosx� 5x sin x,

is a solution of the ordinary di↵erential equation

d2y

dx2
� 4y = 25x sin x,

for any value of the constants C1 and C2, we need to calculate
d2y

dx2
.
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In order to do this we need the product rule to di↵erentiate x sin x. It
gives

d

dx
(x sin x) = sin x + x cos x,

and
d2

dx2
(x sin x) =

d

dx
(sin x + x cos x) = 2 cos x� x sin x.

Hence
d2y

dx2
= 4C1e

2x + 4C2e
�2x � 8 cosx + 5x sin x.

Then

d2y

dx2
� 4y =

h
4C1e

2x + 4C2e
�2x � 8 cosx + 5x sin x

i

� 4
h
C1e

2x + C2e
�2x � 2 cosx� 5x sin x

i
= 25x sin x,

as required.
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Example

To verify that both

f (x, y) = xy � 1

2
y2 and f (x, y) = sin(y � x) +

1

2
x2,

are solutions of the partial di↵erential equation

@f

@x
+
@f

@y
= x,

in each case we need to calculate
@f

@x
and

@f

@y
.

For f (x, y) = xy � 1

2
y2 we have

@f

@x
= y and

@f

@y
= x� y ) @f

@x
+
@f

@y
= y + x� y = x.
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For f (x, y) = sin(y � x) +
1

2
x2 we have

@f

@x
= � cos(y � x) + x and

@f

@y
= cos(y � x)

) @f

@x
+
@f

@y
= � cos(y � x) + x + cos(y � x) = x.

In both cases we have verified the solution of the partial di↵erential equa-
tion.

In this Unit we will look as methods to solve first-order separable and
first-order linear ordinary di↵erential equations, and second-order linear
constant coe�cient ordinary di↵erential equations.

The theory of partial di↵erential equations is outside the scope of this
Unit.
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First-order ordinary di↵erential equations

Most first-order ordinary di↵erential equations can be expressed (by alge-
braic re-arrangement if necessary) in the form

dy

dx
= f (x, y),

where the function f (x, y) is known, and we are asked to find the solution
y(x).

Direction fields

The di↵erential equation
dy

dx
= f (x, y) means that for any point in the

xy�plane (where f is defined) we can evaluate the gradient
dy

dx
and rep-

resent this graphically by means of a small arrow representing the vector✓
1,
dy

dx

◆
.
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If we do this for a whole grid of points in the xy-plane and place all of the
arrows on the same plot we produce what is called a direction field or a
slope field.

The figure below displays the direction field in the case where f (x, y) =
y2 � x2.
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A solution of
dy

dx
= f (x, y) is a function relating y and x which geometri-

cally is a curve in the xy�plane.

Since this solution satisfies the di↵erential equation, the curve is such that
its gradient is the same as the direction field vector at any point on the
curve.

That is, the direction field is a collection of arrows that are tangential
to the solution curves.

This observation enables us to roughly sketch solution curves without ac-
tually solving the di↵erential equation, as long as we have a device to plot
the direction field. We can indeed sketch many such curves (called a family
of solution curves) superimposed on the same direction field.
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The direction field of
dy

dx
= y2 � x2 along with three (disjoint) solution

curves through the points (x, y) = (0, 1), (0, 0) and (0,�2) is shown below.
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Note that we will not be able to solve the di↵erential equation
dy

dx
= y2�x2

using the techniques we will cover in this unit – this di↵erential equation
is known as a Ricatti di↵erential equation, which are notoriously di�cult
to solve!

Example

The direction field of the di↵erential equation

dy

dx
= 3y + ex,

along with three solution curves are shown in the figure below.

The top curve is the solution that goes through (x, y) = (0, 1), the middle
curve is the solution that goes through (x, y) = (0, 0) and the bottom
curve is the solution that goes through (x, y) = (0,�1).
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School of Mathematics and Statistics

MATH1011 MULTIVARIABLE CALCULUS

LECTURE NOTES WEEK 12

First-order ordinary di↵erential equations

A general first-order ordinary di↵erential equation (1st-order ODE, or just
1st-order DE) may be written in the form

dy

dx
= f (x, y),

where f (x, y) is an arbitrary (but known!) functions of x and y.

We wish to find a solution y(x) that satisfies the DE.
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Separable 1st-order DE’s

A 1st-order DE is called separable provided that the function f (x, y) may
be written as the product of a function of x and a function of y, that is
f (x, y) = F (x)G(y).

Thus the variables x and y can be “separated” and placed on opposite
sides of the equation; that is, given

dy

dx
= F (x)G(y).

Then by thinking of the derivative
dy

dx
as a fraction we have

1

G(y)
dy = F (x) dx,

MATH1011 Multivariable Calculus | Lecture Notes Week 12 3

and then each side can be integrated, so that
Z

1

G(y)
dy =

Z
F (x) dx + C,

where the arbitrary integration constant C includes the constants from
both integrals.

We then solve this equation (if possible) for y, which yields the general
solution of the di↵erential equation.

If we can uniquely solve for y, then the solution is called the explicit
solution of the di↵erential equation.

If we cannot uniquely solve for y, then the solution is called the implicit
solution of the di↵erential equation.
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Example

Consider the DE
dy

dx
=
p
xy.

Notice that
dy

dx
=
p
xy

=
p
x
p
y

= x
1
2y

1
2,

so the DE is separable – separating x and y we have

y�
1
2 dy = x

1
2 dx,
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and integrating both sides we have

2y
1
2 = 2

3x
3
2 + C,

which is the implicit solution.

This can be uniquely solved for y, so the explicit solution is

y =
⇣
1
3x

3
2 + C

⌘2
,

where we have arbitrarily re-named the integration constant from
1

2
C to

just C.

Example set 1 – week 12
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1st-order linear DE’s

A 1st-order linear DE in one that may be written in the following standard
form

dy

dx
+ f (x)y = g(x),

where f (x) and g(x) are arbitrary functions of x only. Note that if
g(x) 6= 0, the DE is not separable.

To solve such a DE, we multiply both sides by a function I(x) such that
the L.H.S. may be written

I

✓
dy

dx
+ fy

◆
=

d

dx
(Iy),

thus allowing the L.H.S. to be integrated – hence the function I(x) is called
an integrating factor.
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If an integrating factor I(x) can be found, then the general solution is

d

dx
(Iy) = Ig ) Iy =

Z
Ig dx+C ) y(x) =

1

I(x)

Z
I(x)g(x) dx+

C

I(x)
.

How to we find the function I(x)? Since

I

✓
dy

dx
+ fy

◆
=

d

dx
(Iy),

we have by expanding the L.H.S. and using the product rule on the R.H.S,
that

I
dy

dx
+ Ify = y

dI

dx
+ I

dy

dx
) Ify = y

dI

dx
) dI

dx
= If.

This is a separable DE for I(x), with solution
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1

I
dI = f dx ) ln(I) =

Z
f dx + C ) I = exp

✓Z
f dx + C

◆
.

We want the simplest possible solution for I(x), so we set C = 0.

Hence the integrating factor I(x) = exp

✓Z
f (x) dx

◆
.

Note that exp x is just another way of writing ex but has the advantage
that the “power” x is not a small superscript.
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When learning the method it is instructive to follow through each step in
the process in order to gain a better understanding of how it works.

Having said that, the general solution strategy is as follows:

1. Write the linear first-order di↵erential equation in standard form
dy

dx
+

f (x)y = g(x) and identify the functions f (x) and g(x).

2. Find the integrating factor I(x) = exp

✓Z
f (x) dx

◆
, omitting the in-

tegration constant.

3. Find

Z
I(x)g(x) dx, omitting the integration constant.

4. The general solution is then y(x) =
1

I(x)

Z
I(x)g(x) dx +

C

I(x)
.
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Example

Consider the DE

x
dy

dx
� y = x2ex.

In standard form we have
dy

dx
� 1

x
y = xex,

so f (x) = �1

x
and g(x) = xex. Then

Z
f (x) dx =

Z
�1

x
dx = � ln x = ln

⇣
x�1

⌘
,

and hence

I(x) = exp

✓Z
f (x) dx

◆
= eln(x

�1) = x�1.
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Then Z
I(x)g(x) dx =

Z ⇣
x�1

⌘
(xex) dx =

Z
ex dx = ex,

and the general solution is therefore

y(x) =
1

I(x)

Z
I(x)g(x) dx +

C

I(x)

=

✓
1

x�1

◆
(ex) +

C

x�1

= xex + Cx.

Example set 2 – week 12
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Initial conditions

The values of any constants of integration that arise when we solve di↵er-
ential equations can be determined by making use of other conditions (or
restrictions) placed on the problem.

For first-order di↵erential equations, these conditions are called initial
conditions and the combined di↵erential equation plus initial condition is
called an initial value problem.

The solution of an initial value problem is sometimes called a particular
solution of the ODE, as it will not have any arbitrary constants, unlike
the general solution of the ODE which actually corresponds to an infinite
family of solutions due to the presence of arbitrary constants.
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Example

To solve the initial value problem

dy

dx
=

x2

y
, y(1) = 4,

We observe that the di↵erential equation is separable. The solution is:
Z

y dy =

Z
x2 dx ) 1

2
y2 =

1

3
x3 + C,

which implies

y(x) = ±
r

2

3
x3 + C,

where we have arbitrarily re-named the integration constant.

Notice that we have two di↵erent solutions to the di↵erential equation,
one positive and one negative.
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The initial condition y(1) = 4 allows us to eliminate the negative solution,
so we are left with

y(x) =

r
2

3
x3 + C,

and substituting into this y = 4 and x = 1 gives

4 =

r
2

3
+ C ) C =

46

3
) y(x) =

r
2x3 + 46

3
.

Example set 3 – week 12
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Second-order ordinary di↵erential equations

A general second-order di↵erential equation (2nd-order DE) may be writ-
ten in the form

d2y

dx2
= f

✓
x, y,

dy

dx

◆
,

where f (x, y, y0) is an arbitrary (but known!) function of x, y and y0, and
we wish to find a solution y(x) that satisfies the given DE.

A 2nd-order linear di↵erential equation is one that may be written

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x),

where p(x), q(x) and g(x) are arbitrary functions of x.
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A 2nd-order linear DE is said to be homogeneous if g(x) = 0.

Otherwise the DE is nonhomogeneous and g(x) is called the nonhomo-
geneous term.

If p(x) = p, q(x) = q are constant functions and g(x) = 0, then we
have a 2nd-order linear homogeneous DE with constant coe�cients

d2y

dx2
+ p

dy

dx
+ qy = 0,

otherwise the DE is said to have variable coe�cients.

Since two integrations are required to find a solution of a 2nd-order DE
and each integration produces an arbitrary integration constant, the gen-
eral solution y(x) will contain two integration constants C1 and C2.
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The principal of superposition states that if y1 and y2 are both solutions

of a 2nd-order linear homogeneous DE, then so is the function

y(x) = C1y1(x) + C2y2(x).

See the Unit Reader for a proof of this.

For the solution y = C1y1 +C2y2 to be the general solution of the DE, the
solutions y1 and y2 must also be linearly independent.

Two functions y1 and y2 are called linearly independent if they are not
constant multiples of one another, while they are linearly dependent if
there exists constants C1 and C2, not both zero, such that

C1y1(x) + C2y2(x) = 0,

for all x.
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A simple way to check if two solutions y1 and y2 are linearly independent
is to calculate a function called the Wronskian of y1 and y2, denoted by
W [y1, y2](x), which is defined by

W [y1, y2](x) =

�����
y1 y2

y0
1

y0
2

����� = y1
dy2
dx

� y2
dy1
dx

,

where as usual

����
a b
c d

���� = ad� bc is the determinant.

Then y1 and y2 are linearly dependent if W [y1, y2](x) = 0 for all x, while
they are linearly independent if W [y1, y2](x) 6= 0.

To prove this, we need some concepts of linear algebra which are cov-
ered in MATH1012, hence it is omitted here.
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The conclusion from all this is: given a second-order linear homogeneous
di↵erential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

the general solution is

y(x) = C1y1(x) + C2y2(x),

for arbitrary constants C1 and C2, where both y1 and y2 are solutions of
the di↵erential equation.

The general solution includes every possible solution of the di↵er-
ential equation provided the functions y1 and y2 are linearly independent,
that is the Wronskian

W [y1, y2](x) = det

"
y1 y2
y0
1
y0
2

#
= y1

dy2
dx

� y2
dy1
dx

6= 0.

Example set 4 – week 12
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MATH1011 MULTIVARIABLE CALCULUS

LECTURE NOTES WEEK 13

Second-order linear homogeneous di↵erential equations with
constant coe�cients

The general form of a 2
nd
-order linear homogeneous DE with constant

coe�cients is

d2y

dx2
+ p

dy

dx
+ qy = 0,

where p and q are constants. We attempt to find the general solution by

assuming a solution of the form y = emx
, where m is a constant to be

determined.
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Assuming a solution of the form y = emx
yields

emx
(m2

+ pm + q) = 0 ) m2
+ pm + q = 0.

This is called the characteristic equation of the DE.

Since it is a quadratic in m, it has two roots

m
1
=

�p +
p
p2 � 4q

2
, m

2
=

�p�
p
p2 � 4q

2
.

Hence there are three cases to consider, depending on whether the dis-

criminant p2 � 4q is positive, negative or zero.
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Case 1. Two real roots

In this case the discriminant is positive and we have two real distinct

roots m
1
and m

2
.

Then y
1
= em1

x
and y

2
= em2

x
are two solutions of the DE, and the

Wronskian is

W [y
1
, y

2
](x) =

������

em1
x em2

x

m
1
em1

x m
2
em2

x

������
= (m

2
�m

1
)e(m1

+m
2
)x,

which is never zero since m
1
6= m

2
.

Then the general solution of the DE is

y(x) = C
1
em1

x
+ C

2
em2

x.
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Case 2. Complex conjugate roots

In this case the discriminant is negative and we have two complex roots

m
1
= a + ib and m

2
= a� ib that are complex conjugates of each other,

where a = �1

2
p and b =

1

2

p
4q � p2. Then y

1
= em1

x
and y

2
= em2

x

are two solutions of the DE, and the Wronskian is again never zero since

m
1
6= m

2
. The general solution of the DE is then

y(x) = C
1
e(a+ib)x + C

2
e(a�ib)x.

Recalling Euler’s formula eix = cosx + i sin x, we have

y(x) = C
1
eaxeibx + C

2
eaxe�ibx

= C
1
eax [cos(bx) + i sin(bx)] + C

2
eax [cos(bx)� i sin(bx)]

= (C
1
+ C

2
)eax cos(bx) + i(C

1
� C

2
)eax sin(bx)

= C
1
eax cos(bx) + C

2
eax sin(bx),

where we have arbitrarily re-named the two integration constants.
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Case 3. Equal roots

In this case the discriminant is zero and we have one repeated root m =

�1

2
p, so we only know “half” of the general solution, namely y

1
= emx

.

How to we find the other “half” of the solution, namely y
2
?

If we let y(x) = v(x)y
1
(x) = v(x)e�

1

2
px

for some function v(x) to be

found, then using the product rule we have

dy

dx
=

⇣
e�

1

2
px
⌘ dv

dx
+ v

✓
�1

2
pe�

1

2
px
◆

= e�
1

2
px
✓
dv

dx
� 1

2
pv

◆
,

and using the product rule again we find that

d2y

dx2
= e�

1

2
px

 
d2v

dx2
� p

dv

dx
+
1

4
p2v

!
.
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Then the di↵erential equation becomes

e�
1

2
px

 
d2v

dx2
� p

dv

dx
+
1

4
p2v

!
+ pe�

1

2
px
✓
dv

dx
� 1

2
pv

◆
+ qve�

1

2
px

= 0,

which simplifies to

d2v

dx2
+

✓
�1

4
p2 + q

◆
v = 0.

Since p2� 4q = 0, the coe�cient of v in the above equation is zero, so we

have

d2v

dx2
= 0

which can be integrated twice to give

v(x) = C
1
+ C

2
x.

Therefore

y(x) = v(x)y
1
(x) = (C

1
+ C

2
x)e�

1

2
px

= C
1
e�

1

2
px

+ C
2
xe�

1

2
px.
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Then the second linearly independent solution of the di↵erential equation

is therefore y
2
= xe�

1

2
px
.

Note: This is an example of a process called reduction of order, which is

a way to “build” the general solution of a second-order linear di↵erential

equation provided we can find a single solution y1.

So, if the characteristic equation has only one root m, and the general

solution of the di↵erential equation is

y(x) = C
1
emx

+ C
2
xemx.

Notice that the Wronskian is

W [y
1
, y

2
](x) =

�����
emx xemx

memx
(1 +mx)emx

����� = e2mx,

which is never zero since m 6= 0.

MATH1011 Multivariable Calculus | Lecture Notes Week 13 8

Summary

In summary, to find the general solution of a linear homogeneous second-

order ordinary homogeneous di↵erential equation with constant coe�cients

d2y

dx2
+ p

dy

dx
+ qy = 0,

where p and q are constants, find the roots of the characteristic equation

m2
+ pm + q = 0.

1. If the roots m1 and m2 are real and unequal, then the general solution

is y(x) = C1e
m1x + C2e

m2x.

2. If the roots are complex conjugates a± ib, then the general solution is

y(x) = C
1
eax cos(bx) + C

2
eax sin(bx).

3. If there is a single (or repeated) root m, then the general solution is

y(x) = C
1
emx

+ C
2
xemx.

Example set 1 – week 13
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Linear nonhomogeneous second-order ordinary di↵erential
equations with constant coe�cients

Consider a linear nonhomogeneous second-order ordinary di↵erential equa-

tions with constant coe�cients

d2y

dx2
+ p

dy

dx
+ qy = g(x),

where p and q are constants and the nonhomogeneous term g(x) is an

arbitrary function of x.

For this di↵erential equation we also consider the corresponding homo-

geneous di↵erential equation

d2y

dx2
+ p

dy

dx
+ qy = 0,

with general solution yc, which we call the complementary solution.
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Definition – particular solution

A particular solution yp of the nonhomogeneous di↵erential equation

d2y

dx2
+ p

dy

dx
+ qy = g(x),

is a specific function that contains no arbitrary constants and satisfies the

di↵erential equation.

Theorem – general solution of a nonhomogeneous di↵erential equation

The general solution of a linear nonhomogeneous second-order ordinary

di↵erential equations with constant coe�cients

d2y

dx2
+ p

dy

dx
+ qy = g(x),
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is

y(x) = yc(x) + yp(x),

where yp is a particular solution of the nonhomogeneous di↵erential equa-

tion and yc is the general solution of the corresponding homogeneous dif-

ferential equation

d2y

dx2
+ p

dy

dx
+ qy = 0.

There are two methods to find yp(x), either the method of undetermined
coe�cients (a very specific method) or variation of parameters (a com-

pletely general method).
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Method of undetermined coe�cients

The method of undetermined coe�cients can be applied to a 2
nd
-order

linear nonhomogeneous DE with constant coe�cients when the nonhomo-

geneous term is:

• A polynomial;

• A linear combination of sines and cosines;

• An exponential function; or

• A combination of sums, di↵erences and products of the above functions.

The idea behind this method is that the derivative of a polynomial is

a polynomial, that of a trig function is a trig function, and that of an

exponential function is an exponential function, meaning that we can make

an intelligent guess for the form of yp(x).
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Nonhomogeneous term g(x) Form of trial particular solution yp(x)
.

an(x) = anx
n
+ an�1x

n�1
+ · · · + a1x + a0

.
An(x) = Anx

n
+An�1x

n�1
+ · · ·+A1x+A0

.
an(x)e

↵x
.

An(x)e
↵x

.
an(x) sin(�x) or an(x) cos(�x)

.
An(x) sin(�x) + Bn(x) cos(�x)

.
an(x)e

↵x
sin(�x) or an(x)e

↵x
cos(�x)

.
e↵x [An(x) sin(�x) + Bn(x) cos(�x)]

We formulate a guess for yp using the above table and the following rules:

•Basic rule: If g(x) is one of the functions listed in the first column,

substitute the corresponding function from the second column and de-

termine the unknown constants by equating coe�cients.
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•Modification rule: If a term in the choice for yp is a solution of the

homogeneous equation, then multiply this term by x.

This should come as no surprise – remember that the second solu-
tion of a second-order homogeneous di↵erential equation with con-
stant coe�cients for the case of an equal root of the characteristic
equation was just x times the first solution.

• Sum rule: If g(x) is a sum of functions listed in the first column, then

substitute the corresponding sum of functions from the second column

and solve for the unknown coe�cients by equating coe�cients.

Example set 2 – week 13
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Variation of parameters

In cases where when the method of undetermined coe�cients cannot be

applied, either because the nonhomogeneous term is not of the right type

or the coe�cients of the DE are not constant, a more general method called

variation of parameters may be used to find yp.

Consider the complimentary solution yc = C
1
y
1
+ C

2
y
2
of the general

2
nd
-order linear homogeneous DE

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

To find a particular solution yp of the corresponding nonhomogeneous DE

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = g(x),
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we replace the integration constants C
1
and C

2
in the complementary

solution with unknown functions u
1
(x) and u

2
(x) and suppose that this is

yp; that is, we set

yp(x) = u
1
(x)y

1
(x) + u

2
(x)y

2
(x).

From the product rule we have

dyp
dx

= y
1

du
1

dx
+u

1

dy
1

dx
+y

2

du
2

dx
+u

2

dy
2

dx
= u

1

dy
1

dx
+u

2

dy
2

dx
+

✓
y
1

du
1

dx
+ y

2

du
2

dx

◆
.

This is a nasty-looking expression, so lets set the term in brackets equal

to zero, that is

y
1

du
1

dx
+ y

2

du
2

dx
= 0,

then the first derivative of yp is the not-so-nasty-looking

dyp
dx

= u
1

dy
1

dx
+ u

2

dy
2

dx
.
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Di↵erentiating again using the product rule we have

d2yp
dx2

=
dy

1

dx

du
1

dx
+ u

1

d2y
1

dx2
+
dy

2

dx

du
2

dx
+ u

2

d2y
2

dx2
,

and hence the nonhomogeneous DE becomes

dy
1

dx

du
1

dx
+ u

1

d2y
1

dx2
+
dy

2

dx

du
2

dx
+ u

2

d2y
2

dx2

+ p

✓
u
1

dy
1

dx
+ u

2

dy
2

dx

◆
+ q
�
u
1
y
1
+ u

2
y
2

�
= g,

which may be written

u
1
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
 
d2y

1

dx2
+ p

dy
1

dx
+ qy

1

!
+ u

2
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
 
d2y

2

dx2
+ p

dy
2

dx
+ qy

2

!

+
dy

1

dx

du
1

dx
+
dy

2

dx

du
2

dx
= g.
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The terms in brackets are zero (Why?), so that we have two equations for

the derivatives of the unknown functions u
1
and u

2
, namely

y
1

du
1

dx
+ y

2

du
2

dx
= 0 and

dy
1

dx

du
1

dx
+
dy

2

dx

du
2

dx
= g.

Solving these equations for u0
1
and u0

2
we find

du
1

dx
= �

y
2
g

W [y
1
, y

2
]

and
du

2

dx
=

y
1
g

W [y
1
, y

2
]
,

where W [y
1
, y

2
] is the Wronskian of the homogeneous solutions y

1
and y

2
.

By integrating these equations (omitting the integration constants) we

can obtain the particular solution yp = u
1
y
1
+ u

2
y
2
, and therefore the

general solution y = yc + yp.

Although we said this is a general method, there is no guarantee that
these two equations can be integrated to find u1(x) and/or u2(x)!
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If one of the terms in yp is already in yc, we can “absorb” it into the inte-

gration constants in yc.

Note that the examples that were solved in the previous section by the

method of undetermined coe�cients can also be solved by variation of pa-

rameters.

However, in the vast majority of cases if a nonhomogeneous di↵erential

equation can be solved by the method of undetermined coe�cients, it will

be much easier to use that method than to solve than the same problem

using variation of parameters.

To see this, solve one of the examples we did previously using the method

of undetermined coe�cients using instead the method of variation of pa-

rameters – it will be a lot more work!
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Summary

To find the general solution of a linear nonhomogeneous second-order or-

dinary di↵erential equation with constant coe�cients of general form

d2y

dx2
+ p

dy

dx
+ qy = g(x),

where p and q are constants and g(x) is an arbitrary function of x by the

method of variation of parameters:

1. Find the general solution yc(x) = C1y1(x)+C2y2(x) of the correspond-
ing homogeneous di↵erential equation

d2y

dx2
+ p

dy

dx
+ qy = 0.
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2. Calculate the Wronskian

W [y
1
, y

2
](x) = det

"
y
1
y
2

y0
1
y0
2

#
= y

1

dy
2

dx
� y

2

dy
1

dx
.

3. Let
du

1

dx
= �

y
2
(x)g(x)

W [y
1
, y

2
]
and

du
2

dx
=

y
1
(x)g(x)

W [y
1
, y

2
]
.

4. Integrate these two equations to find u1(x) and u2(x), omitting the

integration constants.

5. A particular solution of the nonhomogeneous di↵erential is then yp(x) =
u1(x)y1(x) + u2(x)y2(x).

6. The general solution of the nonhomogeneous di↵erential equation is

then y(x) = yc(x) + yp(x).

Example set 3 – week 13


