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1 WEEK 1

1.1 VECTOR SPACES

The most familiar example of a vector space will be Rn. Elements of Rn

can be added together and they can be scaled, and we have rules about how
these two operations interact. For example, scaling the sum of two elements
should be the same as summing the individually scaled elements. As we will
see, there are many other useful sets (eg. sets of sequences, sets of functions)
that share this same basic structure and so we need an abstract and precise
definition.

Definition 1.1. A vector space over R is a non-empty set V with two opera-
tions V ×V → V and R×V → V , denoted by (x, y) 7→ x+y and (α, x) 7→ αx
respectively, which satisfy the following, for all x, y, z ∈ V and all α ∈ R:

• x+ y = y + x

• (x+ y) + z = x+ (y + z)

• ∃0 ∈ V s.t. x+ 0 = x

• ∃(−x) ∈ V s.t. x+ (−x) = 0

• α(x+ y) = αx+ αy

• α(βx) = (αβ)x
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• 1x = x

• 0x = 0 for all x, y, z ∈ V and all α, β ∈ R.

Remarks.

- Students who have studied group theory will notice that the first four
properties make (V,+) an abelian group.

- It is possible to have vector spaces over the complex numbers, or indeed
any field. If instead of a field we use a ring with identity we have what
is called a module.

Example 1.2. The space of quadratic polynomials with real coefficients. Let
α ∈ R,u = u1 + u2t+ u3t

2 and v = v1 + v2t+ v3t
2, then define

αu := αu1 + αu2t+ αu3t
2, u+ v := u1 + v1 + (u2 + v2)t+ (u3 + v3)t2

Example 1.3. The space ` of sequences (x1, x2, . . . , xi, . . .) with xi ∈ R. Ad-
dition and scalar multiplication are the same as for Rn.

Example 1.4. The space Map([a, b],R) of maps from the interval [a, b] ⊂ R
to R. Addition and scalar multiplication are defined pointwise, i.e. given
f, g ∈ Map([a, b],R), we define αf by (αf)(t) := αf(t) and f + g by (f +
g)(t) := f(t) + g(t).

b 1.5. For at least one of the above verify that the properties of a vector
space are satisfied.

b 1.6. Recall that a subset of a vector space V is called a subspace if
it is closed under addition and scalar multiplication. Show that the set of
continuous maps C([a, b],R) is a subspace of Map([a, b],R).

Definition 1.7. A map L : V → W between vector spaces is called a linear
map (or transformation or operator) if it preserves the vector space structure,
i.e:

L(αu+ βv) = αL(u) + βL(v)

for all α, β ∈ R and u, v ∈ V . If L is also a bijection it is called an isomor-
phism and we say that V and W are isomorphic.

b 1.8. Show that the vector space from Example 1.2 is isomorphic to R3.

Definition 1.9.

3



- A finite set of vectors {v1, v2 . . . vk} in V is linearly dependent if there
exist α1, α2, . . . , αk, not all zero, such that

∑k
i=1 αivi = 0.

- If a finite set of vectors is not linearly dependent then it is linearly
independent.

- An infinite set of vectors is linearly independent if every finite subset
is linearly independent.

- A vector space is n-dimensional (n finite) if it contains a set of n linearly
independent vectors but no set of n + 1 linearly independent vectors.
Otherwise, it is infinite dimensional.

Example 1.10. The space Map([a, b],R) is infinite dimensional. For any n we
can define fi(t) = ti for i = 0, 1, . . . , n and then {fi : i = 0 . . . n} is a set of
n+1 linearly independent vectors. To see that they are linearly independent
note that if

∑n
i=0 αifi = 0 (the zero function) then α0+α1t+. . .+αnt

n ≡ 0 for
every value of t and therefore every αi = 0. This also shows that C([a, b],R)
is infinite dimensional, because the fi are continuous.

Definition 1.11.

- The span of a set S of vectors in V is the set of all linear combinations
α1v1 + . . .+ αkvk where α1, . . . αk ∈ R and v1, . . . , vk ∈ S.

- A linearly independent subset B ⊂ V with span equal to V is called a
basis for V .

If B is a basis for V , then every non-zero v ∈ V has a unique representa-
tion as a linear combination of finitely many elements of B.

b 1.12. Prove that every finite dimensional vector space has a basis, and
that every finite n-dimensional vector space is isomorphic to Rn.

1.2 NORMED VECTOR SPACES

Definition 1.13. Let V be a real vector space. A function V → R denoted
v 7→ ‖v‖ is called a norm on V if

• ‖v‖ = 0 iff v = 0

• ‖αv‖ = |α|‖v‖
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• ‖u+ v‖ ≤ ‖u‖+ ‖v‖

and then (V, ‖.‖) is called a normed space.

b 1.14. Show that a norm is always non-negative.

In most examples verifying the first two properties of a norm is straight-
forward, but checking the triangle inequality requires some classical inequal-
ities:

• Young’s inequality: for p > 1, 1
p

+ 1
q

= 1, and a, b ≥ 0

ab ≤ ap

p
+
bq

q

• Hölder’s inequality for sums: for x, y ∈ Rn and p > 1, 1
p

+ 1
q

= 1

∑
i|xiyi| ≤ (

∑
i|xi|

p)
1
p (
∑

i|yi|
q)

1
q

The special case p = q = 2 is called the Cauchy-Schwarz inequality.

• Minkowski’s inequality for sums: for x, y ∈ Rn and p ≥ 1

(
∑

i|xi + yi|p)
1
p ≤ (

∑
i|xi|

p)
1
p + (

∑
i|yi|

p)
1
p

• Hölder’s inequality for integrals:

∫ b
a
|f(t)g(t)|dt ≤

(∫ b
a
|f(t)|pdt

)1
p
(∫ b

a
|g(t)|q

)1
q

where f, g : [a, b]→ R are such that the integrals exist.

• Minkowski’s inequality for integrals:(∫ b
a
|f(t) + g(t)|pdt

)1
p ≤

(∫ b
a
|f(t)|pdt

)1
p

+
(∫ b

a
|g(t)|pdt

)1
p

b 1.15. (Difficult) Prove the above inequalities. (Hints. For Young’s in-
equality, susbstitute b = tap/q and use some calculus. For Hölder’s, set
x̄ = (|x1|, . . . , |xn|)/‖x‖p, ȳ = (|y1|, . . . , |yn|)/‖y‖p and use Young’s inequal-
ity. For Minkowski’s, you will need Hölder’s. For the integral versions try to
imitate what was done for sums.)
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Example 1.16. Euclidean space: Rn with the standard norm

‖x‖ =
√
x2

1 + . . .+ x2
n

This is a special case of the norm

‖x‖p := (|x1|p + . . .+ |xn|p)
1
p

for which the triangle inequality corresponds to Minkowski’s inequality.

Example 1.17. On the space of sequences ` (Example 1.3) we define, for
1 ≤ p <∞

‖x‖p := (
∑∞

i=1|xi|
p)

1
p

and `p := {x ∈ ` : ‖x‖p < ∞} is a normed space (Minkowski’s inequality
still holds with n =∞). Notice that `1 is the space of absolutely convergent
series. We can also define

‖x‖∞ := sup
1≤i<∞

|xi|

and `∞ := {x ∈ ` : ‖x‖ <∞} is a normed space.

Example 1.18. C([a, b],R) with the uniform norm (a.k.a. sup norm)

|f |0 := sup
t∈[a,b]

|f(t)|

The sup (in fact, max) exists by the extreme value theorem.

b 1.19. Check that |.|0 is a norm.

Example 1.20. For 1 ≤ p <∞ and f ∈ C([a, b],R) define

‖f‖p :=
(∫ b

a
|f(t)|pdt

)1
p

This norm is known as the Lp norm. The triangle inequality is just the
Minkowski inequality for integrals.

Every normed space has an induced metric given by d(u, v) := ‖u− v‖.
It is non-negative by exercise 1.14 and symmetric by the the commutativity
of vector space addition. For the triangle inequality: d(u, v) = ‖u− v‖ =
‖u− w + w − v‖ ≤ ‖u− w‖+ ‖w − v‖ = d(u,w) + d(w, v). It therefore also
follows that every normed space has a topology.

b 1.21. Using the metric space definition of continuity prove that in a
normed space scalar multiplication by a fixed α ∈ R is continuous at 0.
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2 WEEK 2

2.1 MORE NORMED SPACES

Definition 2.1. A linear map A : V → W between normed spaces is called
bounded if there exists a constant k ≥ 0 such that for all v ∈ V :

‖Av‖ ≤ k‖v‖

(It is common practice to omit the brackets when denoting a linear map, i.e.
Av instead of A(v). Also, we have adopted a common abuse of notation here
whereby ‖ · ‖ denotes both the norm on V and the norm on W . It is clear
from the arguments Av ∈ W ,v ∈ V which norm is intended.)

Proposition 2.2. Let A : V → W be a linear map between normed spaces.
Then the following conditions are equivalent:

(a) A is continuous at 0,

(b) A is continuous,

(c) A is bounded.

Proof. (a) iff (c): Assuming A is continuous at 0, then using the open ball
definition of continuity, for all ε > 0 there exists δ > 0 such that v ∈
Bδ(0) =⇒ Av ∈ Bε(0). In terms of the respective norms this translates
to ‖v‖ < δ =⇒ ‖Av‖ < ε. Choose ε = 1, so there exists δ1 such that
‖v‖ < δ1 =⇒ ‖Av‖ < 1. In particular, for any v the vector δ1

2‖v‖v has norm
δ1
2
< δ1, and so it satisfies

‖A δ1
2‖v‖v‖ < 1

which rearranges to ‖Av‖ < 2
δ1
‖v‖, i.e. A is bounded. Conversely, if A is

bounded with constant k > 0 (if k = 0 then continuity is trivial), given ε > 0
we choose δ = ε

k
. Then if ‖v‖ < δ, since A is bounded we have

‖Av‖ ≤ k‖v‖ < k
ε

k
= ε.

b 2.3. Prove (a) implies (b).
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Example 1.4 actually holds more generally: if V,W are vector spaces then
Map(V,W ) is an infinite dimensional vector space with operations defined
by (f + g)(v) := f(v) + g(v) and αf)(v) := αf(v). The linear maps L(V,W )
form a subspace of Map(V,W ).

b 2.4. Prove that if V,W are finite dimensional then so is L(V,W ).

Example 2.5. If V,W are normed spaces then we define another subspace
B(V,W ) consisting of the bounded (and therefore continuous) linear maps.
This space can be given a norm, for A ∈ B(V,W ) define:

|A| := sup
v∈V−{0}

‖Av‖
‖v‖

= sup
‖v‖=1

‖Av‖

The case W = R is important enough to have its own name: B(V,R) is
known as the dual space of V and is usually denoted V ∗.

Proposition 2.6. Write En for Rn with the Euclidean norm. Every linear
map En → Em is continuous, i.e. L(En, Em) = B(En, Em).

Proof. Let f : En → Em be a linear map. Using the standard bases we can
always find a matrix representation of f , i.e.

f(x) =

f1(x)
...

fm(x)

 =

a11

. . .

amn


x1

...
xn


Now matrix multiplication can be written fi(x) =

∑n
j=1 aijxj. If we let

k = maxi,j |aij| then by the triangle inequality, and then Cauchy-Schwarz,

|fi(x)| ≤ k(
∑

j |xj|) = k(
∑

j 1|xj|) ≤ k(
∑

j |xj|2)
1
2 (
∑

j 12)
1
2 =
√
nk‖x‖

hence ‖f(x)‖2 =
∑

i |fi(x)|2 ≤
∑

i nk
2‖x‖2 = n2k2‖x‖2. It follows that f is

bounded, and therefore continuous (Prop. 2.2).

The above result L(V,W ) = B(V,W ) also holds for any finite dimen-
sional vector spaces V,W , but this will be easier to prove once we introduce
compactness. It is not true for infinite dimensional vector spaces.

b 2.7. Find an example of an unbounded linear operator.
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2.2 INNER PRODUCT SPACES

Another familiar structure on Rn which generalises to other vector spaces is
the dot product: x · y = x1y1 + . . .+ xnyn. It is an example of what is called
an inner product (or sometimes scalar product).

Definition 2.8. An inner product on a real vector space V is a map V ×V → R
denoted (u, v) 7→ 〈u, v〉 which satisfies:

(i) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇐⇒ u = 0

(ii) 〈u, v〉 = 〈v, u〉

(iii) 〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉

for all u, v, w ∈ V, and α, β ∈ R.

There are also technical terms for each of these properties. Maps which
satisfy (i) and (ii) are called positive semi-de�nite and symmetric respectively.
The third property can be called linearity in the first argument, i.e. for fixed
w ∈ V , the map 〈·, w〉 : V → R is linear. By the symmetry property it is
also linear in the second argument: 〈u, αv+ βw〉 = 〈αv+ βw, u〉 = α〈v, u〉+
β〈w, u〉 = α〈u, v〉+β〈u,w〉, and so we say it is bilinear. In summary, an inner
product is a positive semi-definite, symmetric bilinear map V × V → R.

Lemma 2.9. Every inner product on V satisfies

〈u, v〉2 ≤ 〈u, u〉〈v, v〉 (1)

for all u, v ∈ V .

Proof. If v = 0 then the inequality holds trivially, so assume v 6= 0. By (i)
and bilinearity, for any α ∈ R:

0 ≤ 〈u− αv, u− αv〉 = 〈u, u〉 − 2α〈u, v〉+ α2〈v, v〉

Let α = 〈u,v〉
〈v,v〉 and substitute into the above to get

0 ≤ 〈u, u〉 − 2
〈u, v〉2

〈v, v〉
+
〈u, v〉2

〈v, v〉
= 〈u, u〉 − 〈u, v〉

2

〈v, v〉

and now rearrange.
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A norm can be derived from any inner product according to ‖v‖ :=√
〈v, v〉, and using this notation (1) is written:

|〈u, v〉| ≤ ‖u‖‖v‖

which is the (general) Cauchy-Schwarz inequality.

b 2.10. Verify that the norm derived from an inner product is indeed a
norm.

Any norm which is induced by an inner product according to the rule
above must satisfy the parallelogram equality:

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2)

(to confirm this calculate 〈u + v, u + v〉 + 〈u − v, u − v〉). There are norms
which do not satisfy this equality, and so not all normed spaces are inner
product spaces (see examples below). If we are given a norm which does
satisfy the parallelogram equality, the corresponding inner product can be
recovered by the polarization identity:

〈u, v〉 = 1
4
(‖u+ v‖2 − ‖u− v‖2)

(this identity can also be verified by straightforward calculation).

Example 2.11. The sequence space `2 (cf. Example 1.17) has the inner prod-
uct 〈x, y〉 :=

∑∞
i=1 xiyi. This is well defined (i.e. the sum converges) by the

Hölder inequality for sums (which is actually Cauchy-Schwarz for this inner
product) and the assumption that x, y are in `2.

Example 2.12. `p with p 6= 2 is not an inner product space. The norm
fails to satisfy the parallelogram inequality: suppose x = (1, 1, 0, 0, . . .), y =

(1,−1, 0, 0, . . .), then ‖x‖p = 2
1
p = ‖y‖p and ‖x+ y‖p = 2 = ‖x− y‖p.

Example 2.13. For f, g ∈ C([a, b],R) define

〈f, g〉 :=

∫ b

a

f(t)g(t)dt

The corresponding norm is the L2 norm from example 1.20, and so this is
called the L2 inner product. Cauchy-Schwarz for this inner product is the
Hölder inequality for integrals.
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We remark that C([a, b],R) is not the biggest function space on which
the L2 norm and inner product is well defined. For example, any piecewise
continuous function has an L2 norm. We will have more to say about this
later.

b 2.14. Show that the uniform norm | · |0 (example 1.18) is not derived
from an inner product.
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3 WEEK 3

3.1 CONVERGENCE, COMPACTNESS AND COMPLETENESS

Definition 3.1. Let (xn) = (x1, x2, . . . , xn, . . .) be a sequence in a metric space
(X, d). We say the sequence is convergent and has limit x ∈ X (notation
xn → x or limn→∞ xn = x) if d(x, xn) → 0, i.e. for all ε > 0 there exists N
such that d(x, xn) < ε for all n > N .

Lemma 3.2. Every convergent sequence is bounded.

Proof. We recall that a subset U ⊂ X is bounded if its diameter:

sup
x,y∈U

d(x, y)

is finite. A sequence is bounded if the corresponding subset of X is bounded.
Suppose xn → x, then for ε = 1 there exists N such that d(xn, x) < 1 for all
n > N . Let a = maxn≤N d(xn, x), then for all n,m we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) < 2 max{a, 1},

and so the sequence is bounded.

Lemma 3.3. The limit of a convergent sequence is unique.

Proof. Suppose xn → x and also xn → y, then

d(x, y) ≤ d(x, xn) + d(xn, y)

for all n. But for all ε > 0, there exist N1, N2 such that the right hand side
of the above inequality is less than 2ε when n > max{N1, N2}. Hence for all
ε > 0 we have d(x, y) < ε, i.e. d(x, y) = 0 and x = y.

b 3.4. Prove that if xn → x and yn → y then d(xn, yn)→ d(x, y).

Proposition 3.5. A subset U ⊂ X is closed iff for every convergent sequence
xn → x with xn ∈ U for all n we also have x ∈ U .

Proof. First suppose U is closed and xn → x with xn ∈ U . If x ∈ X\U ,
then there exists Bε(x) ⊂ X\U because X\U is open. But by convergence
there exists an N such that xn ∈ Bε(x) for all n > N , i.e. xn /∈ U , which
contradicts an assumption, so x ∈ U . Conversely suppose xn → x with
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xn ∈ U implies x ∈ U . We need to prove X\U is open. Suppose it is not,
then there exists a ∈ X\U such that for all ε > 0 the intersection Bε(a) ∩ U
is non-empty. So we can construct a sequence by choosing xn ∈ B1/n(a)∩U .
By construction xn ∈ U and xn → a, however a /∈ U which contradicts an
assumption, so X\U must be open and U is closed.

Definition 3.6. A subset U of a metric space X is called (sequentially1) com-
pact if every sequence (xn) ⊂ U has a convergent subsequence with limit in
U

Note: a subsequence is obtained by deleting elements of the original se-
quence, the order is not changed.

b 3.7. All compact sets are closed.

Lemma 3.8. Every sequence (xn) in R has a monotone subsequence.

Proof. We call xn a trough if xm > xn for all m > n. Consider the three
cases:

• If there are no troughs then there exists xni ≤ x1, and since xni is not
a trough there exists xni+1

≤ xni . Thus we construct a non-increasing
subsequence.

• If there are finitely many troughs, delete everything before the last
trough and proceed as if there are no troughs.

• If there are infinitely many troughs xn1 < xn2 < . . . then they form an
increasing subsequence.

Theorem 3.9. (Bolzano-Weierstrass Theorem) Every closed and bounded
interval [a, b] ⊂ R is compact.

Proof. By Lemma 3.8 any sequence in [a, b] has a monotone subsequence
(which is bounded), so by the monotone sequences theorem this subsequence
converges. Since the interval is closed, it contains the limit.

1Later in the main notes you will see a more general definition of compactness which
applies to topological spaces, and agrees with this one in metric spaces.
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Definition 3.10. A sequence (xn) in a metric space X is called a Cauchy
sequence if for all ε > 0 there exists N > 1 such that d(xn, xm) < ε for all
m,n ≥ N .

b 3.11. Every Cauchy sequence is bounded.

b 3.12. Every convergent sequence is a Cauchy sequence (the converse is
not always true).

Example 3.13. Let X = (0, 1] with the standard Euclidean metric from R
(derived from absolute value). Then the sequence xn = 1/n is Cauchy but
not convergent in X (although it is convergent in R). This demonstrates
that convergence is not a property of the sequence alone, but also depends
on the metric space containing the sequence.

Example 3.14. Consider the rational numbers Q with the standard metric
(derived from absolute value). The sequence of rationals defined recursively
by xn+1 := xn

2
+ 1

xn
, x1 = 1, is Cauchy but not convergent in Q. (This

sequence computes approximations of
√

2 and is sometimes called the Baby-
lonian method).

Definition 3.15. A metric space is called complete if every Cauchy sequence
converges.

Lemma 3.16. If X is compact then it is complete.

Proof. Let (xn) be a Cauchy sequence. Since X is compact there is a con-
vergent subsequence xnk → x, and we will show that xn → x also. Given
ε > 0 there exists N such that d(xn, xm) < ε/2 for all m,n > N , and there
exists K such that d(xnk , x) < ε/2 for all k > K. Hence for n ≥ N , choosing
k > K sufficiently large so that nk > N :

d(xn, x) ≤ d(xn, xnk) + d(xnk , x) < ε/2 + ε/2 = ε

i.e. xn → x.

Example 3.14 showed that Q is not complete.

Proposition 3.17. R is complete.

Proof. Consider a Cauchy sequence (xn) in R. By exercise 3.11 (xn) is
bounded, and therefore it is contained in a closed interval [a, b]. By the
Bolzano-Weierstrass theorem this interval is compact, and then it is com-
plete by 3.16 and the sequence converges.
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b 3.18. (Difficult) `p is complete.

Proposition 3.19. C([a, b],R) is complete with respect to the metric in-
duced by the uniform norm | · |0
Proof. Let (xn) be a Cauchy sequence, i.e. given ε > 0 there exists N such
that for all m,n > N

d(xn, xm) = sup
t∈[a,b]

|xn(t)− xm(t)| < ε

Hence for any fixed t0 ∈ [a, b] we also have |xn(t0)− xm(t0)| < ε. So (xn(t0))
is a Cauchy sequence in R, which is complete, so (xn(t0)) converges (this is
called pointwise convergence). For each t ∈ [a, b] define x(t) := limn→∞ xn(t).
We will first show that x is continuous, and then that xn → x in the uniform
norm.

Suppose x has a point of discontinuity at t0, i.e. there exists ε > 0 such
that for all δ > 0 there exists t1 ∈ Bδ(t0) with |x(t1) − x(t0)| > ε. By
pointwise convergence there exists n such that |xn(t1) − x(t1)| < ε/3 and
|xn(t0)− x(t0)| < ε/3. Then using the triangle inequality

ε < |x(t1)− x(t0)| = |x(t1)− xn(t1) + xn(t1)− xn(t0) + xn(t0)− x(t0)|
< |x(t1)− xn(t1)|+ |xn(t1)− xn(t0)|+ |xn(t0)− x(t0)|
< ε/3 + |xn(t1)− xn(t0)|+ ε/3

From this we conclude ε/3 < |xn(t1)− xn(t0)|, and therefore t0 is a point of
discontinuity of xn. But this contradicts the assumption that xn ∈ C([a, b],R),
so x must be continuous.

Now suppose that xn does not converge to x. Then there is an ε > 0 such
that for all N there exists n > N with supt∈[a,b] |xn(t)− x(t)| > ε. But then
there also exists t0 ∈ [a, b] such that |xn(t0)−x(t0)| > ε/2, which contradicts
pointwise convergence.

Proposition 3.20. C([a, b],R) is not complete in the (metric derived from
the) L2 norm.

Proof. To make the notation lighter we let [a, b] = [0, 1]. We will construct
a Cauchy sequence in C([0, 1],R) which converges in the space of piecewise-
continuous functions (also with the L2 inner product). Define

fn(t) :=


0 0 ≤ t < 1

2
− 1

2n

nt+ 1
2
(1− n) 1

2
− 1

2n
≤ t < 1

2
+ 1

2n

1 1
2

+ 1
2n
≤ t < 1

15



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1: A plot of fn for n = 2 . . . 10. Blue represents higher values of n.

so (fn) is a sequence of functions which are all in C([0, 1],R). Since any
convergent sequence is Cauchy, if we can prove that (fn) converges in the
L2-norm to a function h which is not continuous, then we have a Cauchy
sequence in C([0, 1],R), ‖ · ‖2. Moreover, by uniqueness of limits we will have
shown that this sequence does not converge (in C([0, 1],R), ‖ · ‖2). We will
therefore have a counterexample proving C([0, 1],R), ‖ · ‖2 is not complete.
Define

h(t) :=

{
0 0 ≤ t ≤ 1

2

1 1
2
< t ≤ 1

and observe that fn(t) − h(t) = 0 except when 1
2
− 1

2n
< t < 1

2
+ 1

2n
, and

notice also that (fn(t)− h(t))2 < 1. Thus

‖fn − h‖2
2 =

∫ 1

0

(fn(t)− h(t))2dt =

∫ 1
2

+
1

2n

1
2
− 1

2n

(fn(t)− h(t))2dt

<

∫ 1
2

+
1

2n

1
2
− 1

2n

1dt =
1

n

16



and therefore limn→∞ ‖fn − h‖2 = 0.

Note that this proof is easily adapted to general intervals [a, b], and also
the Lp norm.
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4 WEEK 4

4.1 COMPLETION OF METRIC SPACES

Definition 4.1. A map f : X → Y between metric spaces is called an isometry
if for all x, y ∈ X,

dY (f(x), f(y)) = dX(x, y)

The metric spaces X and Y are called isometric if there exists an isometry
X → Y which is bijective.

b 4.2. Describe all the isometries from R2 to itself (with the Euclidean
metric).

b 4.3. Show that a linear map A : V → W between normed spaces is an
isometry iff ‖Av‖ = ‖v‖
Definition 4.4. A subset M of a metric space X is called dense in X if the
closure M̄ (i.e. the smallest closed subset of X containing M) is equal to X.

Lemma 4.5. M is dense in X iff for all x ∈ X and ε > 0, Bε(x) ∩M is
non-empty.

Proof. If for some x ∈ X and ε > 0 we have Bε(x) ∩M = ∅, then X\Bε(x)
is a closed proper subset of X which contains M , i.e. M̄ 6= X. Conversely if
there exists m ∈ Bε(x)∩M for all x ∈ X and ε > 0, then for each x ∈ X we
can construct a sequence (mn) in M with mn ∈ B1/n(x)∩M . Since mn → x
we must have x ∈ M̄ by Proposition 3.5.

b 4.6. Q is dense in R.

The following inequality will be useful in the proof of Theorem 4.8.

Lemma 4.7. Let u, v, w, x ∈ X, then

|d(u, v)− d(w, x)| ≤ d(u,w) + d(v, x). (2)

Proof. By the triangle inequality d(u, v) ≤ d(u,w) + d(w, x) + d(x, v) and
therefore d(u, v)− d(w, x) ≤ d(u,w) + d(x, v). Similarly d(w, x)− d(u, v) ≤
d(w, u) + d(v, x), and the result follows by combining these two inequalities.

Theorem 4.8. Given any metric space X, d there exists a complete metric
space X̂, d̂ such that X is isometric to a dense subspace of X̂. This subspace
X̂ is called the completion of X and is unique up to isometries (i.e. if X̃ is
another completion then X̃ and X̂ are isometric).

18



Proof. First we will construct X̂, d̂ out of equivalence classes of Cauchy se-
quences. Suppose (xn) and (x′n) are Cauchy sequences in X and define an
equivalence relation

(xn) ∼ (x′n) iff lim
n→∞

d(xn, x
′
n) = 0.

We write [(xn)] for the equivalence class of (xn). Define X̂ to be the set of
all equivalence classes of ∼, and for x̂ = [(xn)], ŷ = [(yn)] in X̂ we define

d̂(x̂, ŷ) := lim
n→∞

d(xn, yn)

There are several things to check to confirm that d̂ is well-defined: the limit
must always exist and be independent of the particular choices (xn), (yn)
representing the equivalence classes, and d̂ must satisfy the properties of a
metric. For existence of the limit, we use (2)

|d(xm, ym)− d(xn, yn)| ≤ d(xn, xm) + d(ym, yn)

Since (xn), (yn) are Cauchy sequences, for all ε > 0 there exists N such that
the left hand side of the above is less than ε. This means the sequence
(d(xn, yn)) is Cauchy and therefore converges by completeness of R, and so
limn→∞ d(xn, yn) exists. To see that the limit does not depend on the choices
of (xn), (yn) suppose we also have (xn)′ ∈ x̂ and (y′n) ∈ ŷ. Using (2) again
we have

|d(xn, yn)− d(x′n, y
′
n)| ≤ d(xn, x

′
n) + d(yn, y

′
n)

Since (xn) ∼ (x′n) and (yn) ∼ (y′n), in the limit n→∞ the above inequality
gives limn→∞ |d(xn, yn) − d(x′n, y

′
n)| = 0 and therefore limn→∞ d(xn, yn) =

limn→∞ d(x′n, y
′
n). To see that d̂ is a metric, observe that non-negativity and

symmetry follow directly from the properties of d. Moreover d̂(x̂, ŷ) = 0 =
limn→∞ d(xn, yn) iff (xn) ∼ (yn) and x̂ = ŷ. The triangle inequality for d̂
follows by taking the limit of the triangle inequality for d.

Next we will construct an isometry T : X → T (X) ⊂ X̂ by b 7→ b̂ :=
[(b, b, . . .)], i.e. b̂ is the equivalence class of a constant (Cauchy) sequence.
This map is injective and if ĉ = [(c, c, . . .)] then

d̂(b̂, ĉ) = lim
n→∞

d(b, c) = d(b, c)

so T is indeed an isometry. To show that T (X) is dense we will use the
criterion provided by Lemma 4.5 and prove that for all ε > 0 and any x̂ =

19



[(xn)] ∈ X the open ball Bε(x̂) contains an element of T (X). Indeed since
(xn) is Cauchy there exists N such that d(xn, xN) < ε/2 for all n > N , and
then x̂N := [(xN , xN , . . .)] ∈ T (X) satisfies

d̂(x̂, x̂N) = lim
n→∞

d(xn, xN) ≤ ε/2 < ε

i.e. x̂N ∈ T (X) ∩Bε(x̂).
We now show that X̂ is complete. Let (x̂n) be a Cauchy sequence in X̂.

Since T (X) is dense in X̂, for each x̂n there exists zn ∈ X with ẑn := T (zn) ∈
B1/n(x̂n). In this way we construct a sequence (ẑn) in T (X) which satisfies

d̂(ẑm, ẑn) ≤ d̂(ẑm, x̂m) + d̂(x̂m, x̂n) + d̂(x̂n, ẑn) ≤ 1
m

+ d(x̂m, x̂n) + 1
n

which shows that (ẑn) is Cauchy (because (x̂n) is). Now since T is an isometry
the corresponding sequence (zn) in X is also Cauchy, and so it is a member
of an equivalence class in X̂. We will write x̂ := [(zn)], this is our candidate
for the limit of (x̂n). Since ẑn ∈ B1/n(x̂n) we have

d̂(x̂n, x̂) ≤ d̂(x̂n, ẑn) + d̂(ẑn, x̂) ≤ 1
n

+ d̂(ẑn, x̂)

Now recalling that x̂ = [(zm)] and ẑn = [(zn, zn, . . .)], and the definition of d̂,

d̂(x̂n, x̂) ≤ 1
n

+ lim
m→∞

d(zn, zm)

and now taking limn→∞ shows x̂n → x̂.
Finally, let us prove that the completion is unique up to isometry. Suppose

T̃ : X → X̃ is another completion. Then T T̃−1 : T̃ (X) → T (X) is an
isometry. We define an isometry φ : X̃ → X̂ as follows. For any x̃ ∈ X̃, since
T̃ (X) is dense there exists (x̃n) in T̃ (X) such that x̃n → x̃. Then because
T T̃−1 is an isometry, (T T̃−1x̃n) is a Cauchy sequence and therfore has a limit
x̂ =: φ(x̃). Before proving that this is a well defined function (i.e. it does
not depend on the choice of (x̃n)) we note that given x̃, ỹ:

d̂(φ(x̃), φ(ỹ)) = lim
n→∞

d(T̃−1(x̃n), T̃−1ỹn) = lim
n→∞

d̃(x̃n, ỹn) = d̃(x̃, ỹ)

by definition of d̂, the fact that T̃ is an isometry, and exercise 3.4. This shows
that φ is an isometry and also that it is well defined. Indeed if x̃n → x̃,
x̃′n → x̃ and T T̃−1x̃n → x̂, T T̃−1x̃′n → x̂′, then the above equality implies
that d̂(x̂, x̂′) = d̃(x̃, x̃) = 0. So φ is a well defined isometry. In fact an
inverse can be constructed by the same method so it is also bijective and X̃
is isometric to X̂.
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Example 4.9. We have already noted that Q is dense in R, but we did not
specify exactly how R should be constructed. In fact one way of defining R
is as the completion of Q.

b 4.10. (difficult) The metric space completion of a normed space can be
given the structure of a normed space (note that this requires a vector space
structure as well as a norm on the space of equivalence classes of Cauchy
sequences).
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5 WEEK 5

5.1 BANACH AND HILBERT SPACES

Definition 5.1. A normed space which is complete with respect to the metric
derived from the norm is called a Banach space. An inner product space
which is complete with respect to the metric derived from the (norm derived
from the) inner product is called a Hilbert space.

Example 5.2. We will prove below that every finite dimensional normed space
is a Banach space.

Example 5.3. Proposition 3.20 showed that C([a, b],R), ‖ · ‖2 is not com-
plete. The completion is denoted L2([a, b],R), and called the space of square
integrable functions. More generally Lp([a, b],R) can be defined as the com-
pletion of C([a, b],R), ‖ · ‖p. This is a Banach space for each p ≥ 1, and a
Hilbert space when p = 2.

Note that according to the proof of Prop. 3.20, L1([a, b],R) must contain
all the piecewise continuous functions. Moreover it must then also contain
the limits of Cauchy sequences of piecewise continuous functions, some of
which are not Riemann integrable, and yet have a well-defined L1 norm. We
might use this as motivation for developing a method of integration which
does apply to such functions. Such a method does exist but it is beyond the
scope of this course. It is called Lebesgue integration and L1([a, b],R) can
also be defined as the set of Lebesgue integrable functions.

Lemma 5.4. Let {v1, . . . , vn} be a linearly independent set of vectors in
a normed space V, ‖ · ‖. Then there exists a constant c > 0 such that for
any scalars α1, . . . , αn (the superscript is denoting an index here, not an
exponent):

‖α1v1 + . . .+ αnvn‖ ≥ c(|α1|+ . . .+ |αn|)
Proof. Let s = (|α1| + . . . + |αn|). If s = 0 then the inequality holds for
any s, so suppose s 6= 0 and define βi := αi/s. Dividing each side of the
inequality by s we see that an equivalent statement is that for any βi, . . . , βn

with
∑

i |βi| = 1 there exists c > 0 such that

‖
∑
i

βivi‖ ≥ c

Suppose this statement is false. Then there is a sequence

(βm) = (β1
mv1 + . . .+ βnmvn)
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in V with
∑

i |βim| = 1 such that ‖βm‖ → 0. Since each coefficient sequence
(βim) is bounded |βim| ≤ 1, by the Bolzano-Weierstrass theorem 3.9 there is a
convergent subsequence βimk → βi for each i. To avoid nested subscripts we
introduce some new notation: a subsequence of (βm) will be denoted (βm∈I)
where I ⊂ N, and then a subsequence of a subsequence can be denoted
(βm∈J) where J ⊂ I.

Take a diagonal subsequence of (βm) as follows: start with a subsequence
(βm∈I1) such that β1

m∈I1 → β1, then by Bolzano-Weierstrass this subsequence
has a subsequence (βm∈I2⊂I1) for which the second coefficient also converges
β2
m∈I2 → β2. Continuing in this manner we construct a subsequence (βm∈In)

such that βim∈In → βi for all i, and therefore βm∈In → β =
∑

i β
ivi because

‖βm − β‖ = ‖
∑
i

(βim − βi)vi‖ ≤
∑
i

|βim − βi|‖vi‖.

Now since |βim∈In| → |β
i| and

∑
i |βim| = 1 it follows that

∑
i |βi| = 1. But

then there exists i such that βi 6= 0, which by the linear independence of
{v1, . . . , vn} implies that β 6= 0, and then ‖βm∈In‖ → ‖β‖ 6= 0 contradicts
the assumption that ‖βm‖ → 0 (a subsequence of a convergent sequence must
have the same limit).

Proposition 5.5. Every finite dimensional normed space is complete (and
therefore a Banach space).

Proof. Let (xm) be a Cauchy sequence in an n-dimensional normed space
V, ‖ · ‖. Let {e1, . . . en} be a basis for V , so xm = x1

me1 + . . . + xnmen. Since
(xm) is Cauchy, for all ε > 0 there exists N such that if m, ` > N then by
Lemma 5.4

ε > ‖xm − x`‖ = ‖
∑
i

(xim − xi`)ei‖ ≥ c(
∑
i

|xim − xi`|)

for some c > 0. Therefore |xim − xi`| < ε/c, i.e. (xim) is Cauchy. Since
R is complete (Prop. 3.17) (xim) converges xim → xi for each i. Let x :=
x1e1 + . . .+ xnen be the corresponding vector. Then from

‖xm − x‖ = ‖
∑
i

(xim − xi)ei‖ ≤
∑
i

|xim − xi|‖ei‖

and |xim − xi| → 0 we have ‖xm − x‖ → 0, i.e. xm → x.
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We have already seen that there exist infinite dimensional normed spaces
which are not Banach spaces, however according to exercise 4.10 every normed
space is isometric to a subspace of a Banach space.

5.2 EQUIVALENT SPACES

Definition 5.6. Two metrics d and e on a metric space X are said to be
equivalent metrics if there exist positive constants c1, c2 such that for all x, y ∈
X

c1d(x, y) ≤ e(x, y) ≤ c2d(x, y)

Two norms | · | and ‖ · ‖ on a vector space V are called equivalent norms if
there exist positive constants c1, c2 such that for all v ∈ V

c1‖v‖ ≤ |v| ≤ c2‖v‖

We say two normed spaces V, | · | and W, ‖ ·‖ are equivalent if there is a linear
isomorphism A : V → W and positive constants c1, c2 such that

c1|v| ≤ ‖Av‖ ≤ c2|v|.

b 5.7. Equivalent norms induce equivalent metrics, and equivalent metrics
induce the same topology.

b 5.8. If d, e are equivalent metrics on X, then X, d and X, e have the
same Cauchy sequences.

b 5.9. Equivalent normed spaces are homeomorphic (Prop. 2.2 will be
useful).

Proposition 5.10. All finite n-dimensional normed (Banach) spaces are
equivalent.

Proof. Let V, | · | and W, ‖ · ‖ be n-dimensional Banach spaces, with bases
{v1, . . . , vn} and {w1, . . . , wn} respectively. Define (as you might have in
exercise 1.12) an isomorphism φ : V → W by

φx = φ(x1v1 + . . .+ xnvn) := x1w1 + . . .+ xnwn

Then we want to prove there exist c1, c2 > 0 such that c1|x| ≤ ‖φx‖ ≤ c2|x|
for all x ∈ V . If we let k = maxj ‖wj‖ then

‖φx‖ = ‖x1w2 + . . .+ xnwn‖ ≤
∑

i |xi|‖wi‖ ≤ k
∑

i |xi|

24



and then by Lemma 5.4 there exists c > 0 such that ‖φx‖ ≤ k
c
|x|. To find

c1 we can apply exactly the same argument to φ−1 and obtain k′, c′ such
that |φ−1y| ≤ k′

c′
‖y‖ for all y ∈ W . Setting y = φ(x) and rearranging gives

c′

k′
|x| ≤ ‖φx‖.

In particular it follows that any two norms on a finite dimensional vector
space are equivalent, and then by exercise 5.7 it follows that there is only
one topology on a finite dimensional vector space which comes from a norm.
These statements do not hold for infinite dimensional spaces.

b 5.11. Show that on C([a, b],R) the uniform norm | · |0 and the L2 norm
‖ · ‖ are not equivalent (Hint: suppose there exists c such that |f |0 ≤ c‖f‖2

and construct a continuous function which contradicts this inequality).

b 5.12. Let T 0, T 2 be the respective topologies on C([a, b],R) induced by
the uniform norm and the L2 norm. Show that T 0 is �ner than T 2, i.e.
T 2 ⊂ T 0.

5.3 SUMMARY

The following diagram summarises the inclusions between the various kinds
of spaces we have covered.

topological spaces

complete metric spaces metric spaces

Banach spaces normed vector spaces vector spaces

Hilbert spaces inner product spaces

⊂

⊂

⊂

⊂ ⊂

⊂

⊂

⊂ ⊂
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6 WEEK 6

6.1 ORTHONORMAL SETS

We will work with Hilbert spaces in this section, even though most of the
definitions and results apply in any inner product space.

Definition 6.1. Let H, 〈·, ·〉 be a Hilbert space.

- We say x, y ∈ H are orthogonal (x ⊥ y) if 〈x, y〉 = 0.

- A set F of vectors in H is called an orthogonal set if all distinct pairs
e, f ∈ F, e 6= f are orthogonal.

- An orthogonal set F with ‖e‖ = 1 for all e ∈ F is called orthonormal.

Lemma 6.2. An orthogonal set is linearly independent.

Proof. Suppose F is an orthogonal set and
∑n

i=1 αiei = 0 for some e1, . . . , en ∈
F and αi ∈ R. Then for any j = 1, . . . , n

0 = 〈
∑
αiei, ej〉 =

∑
αi〈ei, ej〉 = αj‖ej‖2

because 〈ei, ej〉 = 0 when i 6= j, and therefore αj = 0 for all j.

Example 6.3. The standard basis for Rn:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

is orthonormal with respect to the dot product. Similarly the sequence space
`2 (cf. example 1.17) contains the set:

{(1, 0, 0, . . .), (0, 1, 0, 0, . . .), (0, 0, 1, 0, 0, . . .), . . .}

which is orthonormal in the inner product: v · w :=
∑∞

i=1 viwi for v, w ∈ `2.

Example 6.4. Consider fn(x) := cosnx ∈ L2([0, π],R) for n = 0, 1, . . ., then
we will show that {f0, f1, . . .} is an orthogonal set in L2. For n ≥ 1:

〈f0, fn〉 =

∫ π

0

1 cosnxdx =
− sinnx

n

∣∣∣∣π
0

= 0
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For n 6= m, and n,m ≥ 1, using the trigonometric identity 2 cos θ cosφ =
cos(θ − φ) + cos(θ + φ):

〈fn, fm〉 =

∫ π

0

cos(nx) cos(mx)dx

= 1
2

∫ π

0

(cos(n+m)x+ cos(n−m)x)dx

=
−1

2(n+m)
sin(n+m)x

∣∣∣∣π
0

− 1

2(n−m)
sin(n−m)x

∣∣∣∣π
0

= 0

To construct an orthonormal set we need the norms:

‖fn‖2 =

∫ π

0

cos2 nxdx = 1
2

∫ π

0

(1 + cos 2nx)dx =
π

2
, ‖f0‖2 =

∫ π

0

1dx = π

so {e0 = 1√
π
, en =

√
2
π

cosnx, n ≥ 1} is an orthonormal set in L2([0, π],R).

Proposition 6.5. Let {v1, . . . , vk} be a set of linearly independent vectors in
H. Then there exists an orthonormal set {e1, . . . , en} with Span{v1, . . . , vk} =
Span{e1, . . . , en}

Proof. (Gram-Schmidt algorithm). Normalise the first vector e1 := v1/‖v1‖
and define

ẽ2 := v2 − 〈v2, e1〉e1

(i.e. v2 minus its component in the e1 direction). Note that ẽ2 is non-zero:
if not then v2 = 〈v2, e1〉e1 = 〈v2, e1〉v1/‖v1‖ and v2 is a scalar multiple of
v1, but they are supposed to be linearly independent. We therefore define
e2 := ẽ1/‖ẽ2‖, and e1, e2 are orthonormal:

〈e1, e2〉 = 1
‖ẽ2‖〈e1, ẽ2〉 = 1

‖ẽ2‖〈e1, v2 − 〈v2, e1〉e1〉 = 1
‖ẽ2‖(〈e1, v2〉 − 〈v2, e1〉) = 0

Suppose inductively that {e1, . . . , ek} (k < n) is an orthonormal set which
spans the same subspace as {v1, . . . , vk}. Then we define

ẽk+1 := vk+1 −
k∑
i=1

〈vk+1, ei〉ei

Once again ẽk+1 6= 0 or else {v1 . . . vn} will be linearly dependent, and so
we define ek+1 := ẽk+1/‖ẽk+1‖. It remains to check that ek+1 thus defined is
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orthogonal to each ej for j ≤ k:

〈ek+1, ej〉 = 1
‖ẽk+1‖

(〈vk+1, ej〉 −
∑k

i=1〈vk+1, ei〉〈ei, ej〉)

= 1
‖ẽk+1‖

(〈vk+1, ej〉 − 〈vk+1, ej〉) = 0

b 6.6. Recall from exercise 1.10 that {f0(t) = 1, f1(t) = t, . . . , fj(t) =
tj, . . .} is a linearly independent set in C([−1, 1],R), and therefore also in
L2([−1, 1],R). Use the Gram-Schmidt algorithm to orthonormalise the first
four functions. If you would like to check your answers look up the Legendre
polynomials online.

Definition 6.7. Let A ⊂ H be a non-empty subset. The orthogonal comple-
ment of A in H is A⊥ := {v ∈ H : 〈v, a〉 = 0 for all a ∈ A}.
b 6.8. If A contains an open ball then A⊥ = {0}.
b 6.9. Let

∑∞
i=1 xi be a series in a Banach space which is absolutely con-

vergent, i.e.
∑∞

i=1 ‖xi‖ converges. Show that
∑∞

i=1 xi also converges.

Theorem 6.10. (Bessel’s inequality) Let {e1, e2, . . .} be an orthonormal se-
quence in H, then for all v ∈ H:

∞∑
n=1

〈v, en〉2 ≤ ‖v‖2

Proof. Consider the partial sum vk =
∑k

n=1〈v, en〉en ∈ H. Then

‖vk‖2 = 〈vk, vk〉 =
〈∑k

n=1〈v, en〉en,
∑k

m=1〈v, em〉em
〉

=
∑k

n=1

∑k
m=1〈v, en〉〈v, em〉〈en, em〉

=
∑k

n=1〈v, en〉2

Furthermore

‖v − vk‖2 = 〈v − vk, v − vk〉 = ‖v‖2 − 2〈v, vk〉+ ‖vk‖2

= ‖v‖2 − 2
∑k

n=1〈v, en〉〈v, en〉+
∑k

n=1〈v, en〉2

= ‖v‖2 −
k∑

n=1

〈v, en〉2

28



It then follows that
∑k

n=1〈v, en〉2 = ‖v‖2 − ‖v − vk‖2 ≤ ‖v‖2, and taking
the limit k →∞ gives Bessel’s inequality (the limit exists by the monotone
sequences theorem).

Definition 6.11. An orthonomal set F in H is called total if SpanF is dense
in H.

In some texts a total orthonormal set is called a complete orthonormal
set or an orthonormal basis. Note however that the latter is not consistent
with our definition 1.11.

Theorem 6.12. Let {e1, e2, . . .} be an orthonormal set in H. Then the
following are equivalent:

(a) {e1, e2, . . .} is total in H,

(b) {e1, e2, . . .}⊥ = {0},

(c) For any x ∈ H we have x =
∑∞

n=1〈x, en〉en.

Proof. (a) implies (b): let Y = Span{e1, e2, . . .} and assume Y = H. If x ∈
{e1, e2, . . .}⊥ then for any linear combination

∑n
j=1 αjej we have 〈x,

∑
αjej〉 =∑

αj〈x, ej〉 = 0, i.e. x ∈ Y ⊥. Since Y is dense there exists xk → x with each
xk ∈ Y , and then ‖x‖2 = 〈x, x〉 = limk→∞〈x, xk〉 = 0 and x = 0.

(b) implies (c): Let x ∈ H, and label the partial sums sk :=
∑k

n=1〈x, en〉en
and σk :=

∑k
n=1〈x, en〉2. By Bessell’s inequality σk converges, and it is

therefore Cauchy. Now supposing j < k, and using orthonormality,

‖sk − sj‖2 = ‖
k∑
n=j

〈x, en〉en‖2 =
k∑
n=j

〈x, en〉2 = |σk − σj|

From this it follows that (sk) is also Cauchy, and therefore converges be-
cause H is complete. Now consider y = x −

∑∞
n=1〈x, en〉en. Then 〈y, ej〉 =

〈x, ej〉 − 〈x, ej〉‖ej‖2 = 0 for all j ≥ 1, so y ∈ {e1, e2, . . .}⊥ = {0} and
x =

∑∞
n=1〈x, en〉en.

b 6.13. (c) implies (a).
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Note: it is important to remember here that x =
∑∞

n=1〈x, en〉en means

precisely limk→∞ ‖x−
∑k

n=1〈x, en〉en‖ = 0. This is not the same as saying x
is in the span of {e1, e2, . . .}.
Example 6.14. The orthonormal set {en = (0, . . . , 0, 1, 0 . . .), n = 1, 2, . . .}
(i.e. the nth element of en is 1) from example 6.3 is total in `2. Indeed if
x = (x1, . . . , xn, . . .) ∈ `2 is perpendicular to each en then 0 = 〈x, en〉 = xn
for all n, and x = 0. So {en = (0, . . . , 0, 1, 0 . . .), n = 1, 2, . . .} is a total
orthonormal set by Theorem 6.12.
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7 WEEK 7

7.1 ORTHONORMAL SETS CONTINUED

Example 7.1. The orthonormal set {e0 = 1√
π
, en =

√
2
π

cosnx, n ≥ 1} from

example 6.4 is total in L2([0, π],R) (we don’t have the tools for a proof of
this yet, so it will come later as an exercise). Note that when we write
x =

∑∞
n=1〈x, en〉en in this case the convergence is in the L2 norm, which does

not imply convergence in the uniform norm. Indeed, you might remember
from first year that if a function f has points of jump discontinuity its Fourier
series does not converge uniformly to f .

Proposition 7.2. (Parseval’s relation) Let {e1, e2, . . .} be a total orthonor-
mal set in a Hilbert space H. Then

〈x, y〉 =
∑∞

n=1〈x, en〉〈en, y〉

for all x, y ∈ H, and in particular ‖x‖2 =
∑∞

n=1〈x, en〉2.

Proof. By theorem 6.12 part (c), and continuity of the inner product, we
have

〈x, y〉 = lim
k→∞

〈∑k
n=1〈x, en〉en,

∑k
m=1〈y, em〉em

〉
= lim

k→∞

∑k
n=1

∑k
m=1〈x, en〉〈y, em〉〈en, em〉

= lim
k→∞

∑k
n=1〈x, en〉〈en, y〉

=
∑∞

n=1〈x, en〉〈en, y〉

b 7.3. Prove that this sum converges.

Definition 7.4. A metric space X is called separable if it has a countable
dense subset.

Example 7.5. R is separable: Q is countable and dense.

b 7.6. Prove that `2 is separable. (Hint: consider the set of rational linear
combinations of elements in the total orthonormal set from example 6.14).

Proposition 7.7. Let H be an infinite dimensional Hilbert space. Then H
is separable iff it contains a total orthonormal set.
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Proof. If H is separable then there exists a dense countable set

W = {w1, w2, . . .} ⊂ H

from which we construct a linearly independent subset W ′ ⊂ W by induc-
tion: assuming {v1, v2, . . . , vk} ⊂ W is linearly independent, let vk+1 =
wj where wj is the first element of W which is not in Span{v1, . . . vk}.
Now W ⊂ SpanW = SpanW ′ so SpanW ′ is dense. Applying the Gram-
Schmidt algorithm to W ′ we obtain an orthonormal sequence {e1, e2, . . .}
with Span{e1, e2, . . .} = SpanW ′, which is dense so {e1, e2, . . .} is total.

Conversely suppose {e1, e2, . . .} is a total orthonormal sequence. Consider
U = {

∑n
j=1 rjej : n ≥ 1, r1, . . . rn ∈ Q}, the set of linear combinations with

rational coefficients. This set is countable, we show it is also dense. Let x ∈
H, ε > 0, then because Span{e1, e2, . . .} is dense there exists a real (αj ∈ R)
linear combination y =

∑n
j=1 αjej, such that ‖x−y‖ < ε/2. Since Q is dense

in R there exist rj ∈ Q such that |rj−αj| < ε/2n. Then ‖y−
∑n

j=1 rjej‖ < ε/2
and it follows by the triangle inequality that ‖x−

∑n
j=1 rjej‖ < ε, which shows

that U is dense.

Theorem 7.8. If H and F are infinite dimensional separable Hilbert spaces
then they are isometrically isomorphic.

Proof. Let {e1, e2, . . .} and {f1, f2, . . .} be total orthonormal sets for H and
F . If x ∈ H then x =

∑∞
n=1〈x, en〉en by Theorem 6.12. We define T : H → F

by Tx :=
∑∞

n=1〈x, en〉fn (this sum converges by the same reasoning used in
Theorem 6.12). Then T is linear and using Parseval’s relation ‖Tx‖2 =∑∞

n=1〈x, en〉2 = ‖x‖2, i.e. T is an isometry. It then also follows that T is
injective, because Tx = Ty implies 0 = ‖Tx− Ty‖ = ‖T (x− y)‖ = ‖x− y‖.
Moreover, T is onto: given y ∈ F we can set x =

∑∞
n=1〈y, fn〉en, and then

Tx = y.

7.2 WEIERSTRASS APPROXIMATION THEOREM

Definition 7.9. A Dirac sequence is a sequence (Kn) of functions R→ R such
that

(1) Kn(x) ≥ 0 for all n, x.

(2) Kn is piecewise continuous on every finite interval and
∫∞
−∞Kn(x)dx =

1.
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(3) Given ε, δ, there exists N such that if n ≥ N then
∫ −δ
−∞Kn+

∫∞
δ
Kn < ε

Example 7.10. Define

Kn(t) =

{
(1−t2)n

cn
|t| ≤ 1

0 |t| > 1

where cn :=
∫ 1

−1
(1 − t2)ndt ensures (2) is satisfied, and also (1). For (3) we

need to estimate cn. Since Kn is even:

cn
2

=

∫ 1

0

(1− t2)ndt =

∫ 1

0

(1 + t)n(1− t)ndt ≥
∫ 1

0

(1− t)ndt =
1

n+ 1

so cn ≥ 2/(n+ 1). Then given δ > 0:∫ 1

δ

Kn(t)dt =

∫ 1

δ

(1− t2)n

cn
≤
∫ 1

δ

n+ 1

2
(1− δ2)ndt =

n+ 1

2
(1− δ2)n(1− δ)

but (n+ 1)(1− δ2)n → 0 as n→∞ (proof: let 1 + t = 1/(1− δ2), then t > 0

and (1 + t)n = 1 + nt + n(n−1)
2

t2 + . . . ≥ n(n−1)
2

t2, thus (n + 1)(1 − δ2)n =
n+1

(1+t)n
≤ 2(n+1)

n(n−1)t2
→ 0). Since Kn is even,

∫ −δ
−1

Kn(t)dt → 0 also, and (3)
holds.

-1 -0.5 0.5 1

0.5

1

1.5

Figure 2: A plot of Kn for n = 2 . . . 10. Blue represents higher values of n.
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Definition 7.11. A function f : X → Y between metric spaces is called
uniformly continuous if for all ε > 0, there exists δ > 0 such that f(x) ∈
Bε(f(x0)) for all x, x0 with x ∈ Bδ(x0).

The difference between uniform continuity and continuity is that for the
latter δ is allowed to vary depending on x0.

b 7.12. Show that a continuous function f : [a, b] → R is uniformly con-
tinuous.

Proposition 7.13. Let f : R → R be a continuous function which is zero
except on (a, b), and (Kn) a Dirac sequence. Define fn(x) := Kn ∗ f :=∫∞
−∞ f(t)Kn(x− t)dt, then fn converges in the uniform norm to f on [a, b].

Proof. Substituting t → x − t gives fn(x) =
∫∞
−∞ f(x − t)Kn(t)dt, and from

property (2) of Dirac sequences f(x) = f(x)
∫∞
−∞Kn(t)dt =

∫∞
−∞ f(x)Kn(t)dt,

and therefore

fn(x)− f(x) =

∫ ∞
−∞

(f(x− t)− f(x))Kn(t)dt (3)

Since f is uniformly continuous on [a, b] by 7.12, given ε > 0 there exists
δ such that

|f(x− t)− f(x)| < ε (4)

for any x ∈ [a, b], when |t| < δ. Moreover setting M = supt∈[a,b] |f(t)|, by
property (3) there exists N such that if n ≥ N then∫ −δ

−∞
Kn +

∫ ∞
δ

Kn < ε/2M (5)

Now from (3)

|fn(x)− f(x)| ≤ (

∫ −δ
−∞

+

∫ δ

−δ
+

∫ ∞
δ

)|f(x− t)− f(x)|Kn(t)dt

To estimate the first and third integrals, note that (by the triangle ineq.)
|f(x− t)− f(x)| ≤ 2M and thus

(

∫ −δ
−∞

+

∫ ∞
δ

)|f(x− t)− f(x)|Kn(t)dt ≤ 2M(

∫ −δ
−∞

+

∫ ∞
δ

)Kn(t)dt < ε
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using (5). For the middle integral we use (4)∫ δ

−δ
|f(x− t)− f(x)|Kn(t)dt ≤ ε

∫ δ

−δ
Kn ≤ ε

Hence |fn(x)− f(x)| < 2ε for all x ∈ [a, b], and fn → f uniformly.

Theorem 7.14. (Weierstrass approximation) Let f ∈ C([a, b],R) and ε > 0.
Then there exists a polynomial function p(t) = α0 + α1t + . . . + αnt

n such
that |f − p|0 < ε, i.e. the polynomial functions are dense in C([a, b],R).

Proof. First note that we can reparametrize any f ∈ C([a, b],R) by x =
(b − a)u + a, 0 ≤ u ≤ 1 and then g(u) := f((b − a)u + a) is an element of
C([0, 1],R). If we can find a polynomial p(u) such that |g(u)− p(u)| < ε for
u ∈ [0, 1] then since u = (x − a)/(b − a) we have |f(x) − p(x−a

b−a )| < ε. But

p(x−a
b−a ) is a polynomial in x so the result follows for f if it is proved for g.

It is therefore sufficient to prove the theorem for [a, b] = [0, 1]. Moreover,
suppose [a, b] = [0, 1] and let h(x) = f(x) − f(0) − x(f(1) − f(0)), then we
have h(0) = 0 = h(1), and if we can approximate h by a polynomial p we
can approximate f by the polynomial p + f(0) + x(f(1) − f(0)). Therefore
it is sufficient to prove the theorem for f satisfying f(0) = 0 = f(1).

So consider f ∈ C([0, 1],R) with f(0) = 0 = f(1) and extend it to all of
R by f(x) = 0 outside [0, 1]. We use the Dirac sequence from example 7.10,
and by Prop. 7.13

fn(x) :=

∫ ∞
−∞

f(t)Kn(x− t)dt =

∫ 1

0

f(t)Kn(x− t)dt

converges uniformly to f on [0, 1]. It remains to prove that fn is a polynomial.
By definition (example 7.10) Kn(x − t) is a polynomial in t and x of order
2n, so we write

Kn(x− t) = g0(t) + g1(t)x+ . . .+ g2n(t)x2n

and then
fn(x) = a0 + a1x+ . . .+ a2nx

2n

where ai =
∫ 1

0
f(t)gi(t)dt.
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b 7.15. Show that C([a, b],R) is separable.

b 7.16. (difficult) Use the Weierstrass approximation theorem to prove

that the orthonormal set {e0 = 1√
π
, en =

√
2
π

cosnx, n ≥ 1} from example

6.4 is total.
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8 WEEK 8

8.1 CONTRACTION MAPPINGS

Definition 8.1. A map f : X → Y between metric spaces X, d and Y, e is
called Lipschitz if there exists c > 0 such that for all x1, x2 ∈ X:

e(f(x1), f(x2)) ≤ cd(x1, x2)

The smallest such c is called the Lipschitz constant of f .

b 8.2. Show that every Lipschitz function is uniformly continuous.

If f : R→ R then the Lipschitz condition is |f(x1)− f(x2)| ≤ c|x1 − x2|
or:

|f(x1)− f(x2)|
|x1 − x2|

≤ c

which tells us that the absolute slope is bounded by c. So we can picture
this condition as follows:

Figure 3: Lipschitz condition for f : R → R: there is a double cone with
slope c such that the graph of f remains outside the cone as the vertex is
moved along the graph.

b 8.3. Let f : R→ R be differentiable on all of R. Then f is Lipschitz iff
|f ′(x)| is bounded.
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Definition 8.4. If X, d is a metric space then f : X → X is called a contraction
mapping if it is Lipschitz with constant c < 1, i.e.

d(f(x), f(y)) ≤ cd(x, y), c < 1

for all x, y ∈ X. A �xed point of f is a point x ∈ X such that f(x) = x.

Theorem 8.5. (Banach fixed point theorem) Let X be a complete metric
space and f : X → X a contraction mapping. Then f has a unique fixed
point.

Proof. The basic idea: for a fixed point d(f(x), x) = 0, so guess any x0 and
find the distance d(f(x0), x0). Unless we are very lucky this distance will
be non-zero, so we update our guess to x1 := f(x0) and find the distance
d(f(x1), x1) = d(f(f(x0)), f(x0)). Since f is a contraction mapping this
distance is smaller than d(f(x0), x0), so x1 is closer to being a fixed point
than x0. We prove that by iterating this process we converge to a fixed point.

Choose x0 ∈ X and define the sequence (xn) by successive iterations of
f , i.e.

x1 = f(x0),

x2 = f(x1) = f(f(x0)) =: f 2(x0)

...

xn = f(xn−1) = fn(x0)

...

We are going to prove that this sequence is Cauchy. By repeated instances
of the Lipschitz property

d(xm+1, xm) = d(fm(x1), fm(x0))

≤ cd(fm−1(x1), fm−1(x0)) ≤ . . . ≤ cmd(x1, x0)

Now for n > m, using the above inequality, the triangle inequality, and the
formula for the geometric series:

d(xn, xm) ≤ d(xm, xm+1) + . . .+ d(xn−1, xn)

≤ (cm + cm+1 + . . . cn−1)d(x0, x1)

≤ cm(
∞∑
i=1

ci)d(x0, x1) = cm
1

1− c
d(x0, x1)
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From which we see that (xn) is Cauchy: since c < 1 we have cm → 0, so
given ε > 0 there exists N such that cm < ε(1− c)/d(x0, x1) for all m > N ,
and then d(xn, xm) < ε for all n > m > N . Now because X is assumed to
be complete we have xn → x ∈ X. To see that x is actually a fixed point:

d(f(x), x) ≤ d(f(x), xn) + d(xn, x) ≤ cd(x, xn−1) + d(xn, x) −→
n→∞

0

so d(f(x), x) = 0 and f(x) = x. Finally, we show that it is unique. Suppose
f(x) = x and f(y) = y. Then

d(x, y) = d(f(x), f(y)) ≤ cd(x, y)

and because c < 1 this inequality implies d(x, y) = 0 and x = y.

8.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO ODE

As a first application of the Banach fixed point theorem we will prove Picard’s
theorem on existence and uniqueness of solutions to ordinary differential
equations (ODE). This theorem gives sufficient conditions on a function f :
R2 → R such that the initial value problem

dx

dt
= f(t, x), x(t0) = x0 ∈ R (6)

has a unique solution.
We are going to need the following property of compact sets.

b 8.6. Show that if f : X → Y is a continuous map from a compact
topological space, then the image f(X) is a compact subset of Y .

Theorem 8.7. Let f be continuous on the domain

D := {(t, x) ∈ R2 : |t− t0| ≤ α, |x− x0| ≤ β}

and suppose f is Lipschitz in its second variable with constant k (independent
of t), i.e.

|f(t, x1)− f(t, x2)| ≤ k|x1 − x2|

for all (t, x1), (t, x2) ∈ D. Then there exists ε > 0 such that (6) has a unique
solution x : [t0 − ε, t0 + ε]→ R.
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Proof. Instead of 6 we consider the equivalent integral equation

x(t) = x0 +

∫ t

0

f(τ, x(τ))dτ (7)

Assume ε < α so that we remain in D, and let U ⊂ C([t0 − ε, t0 + ε],R) be
such that the map T : U → C([t0 − ε, t0 + ε],R), x 7→ Tx defined by

Tx(t) := x0 +

∫ t

0

f(τ, x(τ))dτ

is well defined. At minimum this means that x ∈ U must satisfy |x(t)−x0| <
β so that (t, x(t)) ∈ D and Tx is continuous, but we will define U more
precisely after some more observations. Notice that any fixed point of T
will be a solution to (7) and therefore (6). However in order to apply the
Banach fixed point theorem we need to restrict T to an appropriate domain
U such that U is complete, T (U) ⊂ U , and T is a contraction mapping on
U . To this end, note that D is compact by the Heine-Borel theorem (4.13 in
Springham’s notes), and therefore by exercise 8.6 f(D) is closed and bounded
and c := max(t,x)∈D |f(t, x)| exists. Assuming ε < min{α, β

c
, 1
k
}, we will show

that the domain

U := {x ∈ C([t0 − ε, t0 + ε],R) : |x(t)− x0| < cε}

has the desired properties.
First observe that U is closed: suppose xn → x is a convergent sequence

with xn ∈ U , then

|x(t)− x0| ≤ |x(t)− xn(t)|+ |xn(t)− x0| ≤ |x− xn|0 + cε

therefore x ∈ U and U is closed by Proposition 3.5. Since a closed subset of
a complete space is itself complete (prove as an exercise), U is complete.

To check that T (U) ⊂ U :

|Tx(t)− x0| = |
∫ t

t0

f(τ, x(τ))dτ | ≤
∫ t

t0

|f(τ, x(τ))|dτ ≤ c|t− t0| ≤ cε

and therefore Tx ∈ U .
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Finally, T is a contraction on U because for x, y ∈ U

|Tx(t)− Ty(t)| = |
∫ t

t0

f(τ, x(τ))− f(τ, y(τ))dτ |

≤ k

∫ t

t0

|x(τ)− y(τ)|dτ

≤ k|t− t0||x− y|0
≤ εk|x− y|0

Taking the supremum it follows that |Tx − Ty|0 ≤ εk|x − y|0 and T is a
contraction by the assumption ε < 1

k
. Since T is a contraction on U it has

a unique fixed point x ∈ U ⊂ C([t0 − ε, t0 + ε],R) which satisfies (7) and
therefore (6).
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9 WEEK 9

9.1 DIFFERENTIATION

We recall that the derivative of a function f : R→ R at a ∈ R is defined as

f ′(a) := lim
h→0

f(a+ h)− f(a)

h

if the limit exists. An equivalent statement is

lim
h→0

f(a+ h)− f(a)− hf ′(a)

h
= 0 (8)

Loosely speaking, this means that as h gets small we have f(a+ h)− f(a)−
hf ′(a) ≈ 0. Substituting h = x− a and rearranging

f(x) ≈ f(a) + f ′(a)(x− a)

i.e. when |x − a| is small f(x) can be approximated by the tangent line at
f(a), which is an affine function . Similarly, recall that a function f : R2 → R
can be approximated by the tangent plane at f(a1, a2) (if it exists):

f(x1, x2) ≈ f(a1, a2) + (∂1f(a1, a2), ∂2f(a1, a2))

(
x1 − a1

x2 − a2

)
More succinctly: x, a ∈ R2

f(x) ≈ f(a) +Df(a) · (x− a)

This property is often described by saying that the derivative is the linear
map which gives the best affine approximation to the original function. But
in what sense is it the “best”? Consider a general affine approximation
f(x) ≈ f(a) +A · (x− a), substituting h = x− a (which means that h ∈ R2

now)
f(a+ h) ≈ f(a) + A · h

The error in this approximation will be a function of h

E(h) := ‖f(a+ h)− f(a)− A · h‖

The derivative as we know it (i.e. (8)) can be characterised by requiring that
E(h) should be of order h: meaning

lim
h→0

E(h)

‖h‖
→ 0
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Intuitively, as h gets small the error gets smaller quicker. It turns out that if
a linear map A which gives this behaviour for E(h) exists then it is unique
(see below), and this is the precise sense in which the derivative is “best”.

Definition 9.1. Let E,F be Banach spaces and U ⊂ E. A function f : U →
F is di�erentiable at a ∈ U if there is a continuous linear transformation
Df(a) : E → F , called a derivative, such that

lim
h→0

‖f(a+ h)− f(a)−Df(a)h‖
‖h‖

= 0

Note: h ∈ E, the norm in the denominator is the E norm, and the norm
in the numerator is from F .

Theorem 9.2. If f : U → F is differentiable at a ∈ U then the derivative is
unique.

Proof. Suppose a derivative Df(a) exists and λ : E → F also satisfies

lim
h→0

‖f(a+ h)− f(a)− λh‖
‖h‖

= 0

Let d(h) = f(a+ h)− f(a), then

lim
h→0

‖λh−Df(a)h‖
‖h‖

= lim
h→0

‖λh− d(h) + d(h)−Df(a)h‖
‖h‖

≤ lim
h→0

‖d(h)− λh‖
‖h‖

+ lim
h→0

‖d(h)−Df(a)h‖
‖h‖

= 0

Then let h = tx, where x ∈ E and t ∈ R,

0 = lim
t→0

‖λ(tx)−Df(a)(tx)‖
‖tx‖

= lim
t→0

‖tλx− tDf(a)x‖
|t|‖x‖

=
‖λx−Df(a)x‖

‖x‖

hence λx = Df(a)x for all x ∈ E.

Definition 9.3. f : U → F is di�erentiable if it is differentiable at every
u ∈ U .

b 9.4. Prove that if f : U → F is differentiable at a ∈ U then it is
continuous at a, and conclude that if f : U → F is differentiable then U is
open. (Hint: Proposition 2.2).
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Theorem 9.5. (Chain rule). If f : U ⊂ E → F is differentiable at a and
g : F → G is differentiable at f(a) then g ◦ f : U → G is differentiable at a
and

D(g ◦ f)(a) = Dg(f(a)) ◦D(f(a))

Proof. Let b = f(a), λ = Df(a), µ = Dg(b), and define

Ef (x) :=f(x)− f(a)− λ(x− a) (9)

Eg(y) :=g(y)− g(b)− µ(y − b) (10)

Eg◦f (x) :=g ◦ f(x)− g ◦ f(a)− µ ◦ λ(x− a) (11)

so that by definition of the derivative

lim
x→a

‖Ef (x)‖
‖x− a‖

= 0 (12)

lim
y→b

‖Eg(y)‖
‖y − b‖

= 0 (13)

and to prove the chain rule we need to show that limx→a
‖Eg◦f (x)‖
‖x−a‖ = 0. Using

(9):

Eg◦f (x) = g(f(x))− g(b)− µ(f(x)− f(a)− Ef (x))

= g(f(x))− g(b)− µ(f(x)− b) + µEf (x)

= Eg(f(x)) + µEf (x)

So by the triangle inequality and squeeze theorem, it is enough to prove

lim
x→a

‖Eg(f(x))‖
‖x− a‖

= 0 (14)

lim
x→a

‖µEf (x)‖
‖x− a‖

= 0 (15)

For the latter: by Proposition 2.2 there is a constant k such that ‖µEf (x)‖ ≤
k‖Ef (x)‖ and then the result follows by (12) and the squeeze theorem. As
for (14), from (13) we know that for all ε > 0 there exists δ such that if
‖f(x)− b‖ < δ then

‖Eg(f(x))‖
‖f(x)− b‖

< ε (16)
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Moreover, since f is continuous there exists δ1 such that if ‖x− a‖ < δ1 then
‖f(x)− b‖ < δ and then rearranging (16)

‖Eg(f(x))‖ < ε‖f(x)− b‖ = ε‖Ef (x) + λ(x− a)‖
≤ ε‖Ef (x)‖+ εk‖x− a‖

where we have used Proposition 2.2 again. Now overall we have: for all ε > 0
there exists δ1 such that if ‖x− a‖ < δ1 then

‖Eg(f(x))‖
‖x− a‖

< ε
‖Ef (x)‖
‖x− a‖

+ εk

which together with (9) implies (14).

Proposition 9.6. Some other properties of the derivative:

(1) If f : E → F is a constant function (i.e. for some y ∈ F we have
f(x) = y for all x ∈ E) then Df(a) = 0.

(2) If f : E → F is a continuous linear transformation then Df(a) = f .

(3) If f : Rn → Rm then f is differentiable at a ∈ Rn iff each component
function f i : Rn → R is differentiable at a, and

Df(a) = (Df 1(a), . . . , Dfm(a)) : Rn → Rm

(4) If f, g : Rn → R are differentiable at a then

D(f + g)(a) = Df(a) +Dg(a)

D(fg)(a) = g(a)Df(a) + f(a)Dg(a)

b 9.7. Prove Proposition 9.6 (they are not all easy).

Recall the definition of a partial derivative of f : Rn → R at a ∈ Rn:

∂if(a) := lim
h→0

f(a1, . . . , ai + h, . . . an)− f(a)

h
(17)

The next theorem shows how the partial derivatives are related to Df .
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Theorem 9.8. If f : Rn → Rm is differentiable at a then the partial deriva-
tives of component functions ∂jf

j(a) exist for all 1 ≤ i ≤ m, 1 ≤ j ≤ n and
Df(a) is the linear map represented by the m × n matrix with ijth entry
∂jf

i(a) (the Jacobian matrix ).

Proof. First consider the case m = 1, so f : Rn → R. Define φj : R→ Rn by
φj(x) := (a1, . . . , x, . . . , an), i.e. with x in the jth coordinate. Then by (17)
and the chain rule:

∂jf(a) = lim
h→0

(f ◦ φj)(aj + h)− (f ◦ φj)(aj)
h

= D(f ◦ φj)(aj)
= Df(φj(a

j)) ◦Dφj(aj)

= Df(a)


0
...
1
0
...


where Dφj(aj) has been calculated using the properties in Proposition 9.6.
So ∂jf(a) exists and is the jth entry of the 1×n matrix [Df(a)]. The theorem
now follows for m ≥ 1 by Proposition 9.6 part (3).

b 9.9. Find an example proving the converse to Theorem 9.8 does not hold.
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10 WEEK 10/11

10.1 HIGHER ORDER DERIVATIVES

In Example 2.5 we saw that the space B(V,W ) of continuous linear maps
between normed vector spaces V → W is itself a normed space.

b 10.1. (difficult) If W is a Banach space then B(V,W ) is a Banach space.

Definition 10.2. Let V1, V2,W be normed vector spaces and b : V1×V2 → W .
We say b is bilinear if for all v1 ∈ V1, v2 ∈ V2

• b(·, v2) : V1 → W , and

• b(v1, ·) : V2 → W

are both linear. Similarly multilinear maps V1 × . . . × Vk → W are linear in
each argument, and when the vector spaces are finite dimensional they are
often called tensors.

Definition 10.3. The direct sum V1 ⊕ V2 of two vector spaces is the cartesian
product V1×V2 with the vector space structure defined by (x1, x2)+(y1, y2) :=
(x1 + y1, x2 + y2) and α(x1, x2) := (αx1, αx2).

b 10.4. Show that ‖(v1, v2)‖ := ‖v1‖+‖v2‖ defines a norm on V1⊕V2, and
if V1, V2 are Banach spaces then so is V1 ⊕ V2. Prove that the topology on
V1 × V2 induced by this norm is the product topology.

b 10.5. Show that a bilinear map is not linear on the direct sum, and vice
versa.

b 10.6. Prove that a bilinear map b : V1 × V2 → W is continuous iff there
exists c > 0 such that ‖b(v1, v2)‖ ≤ c‖v1‖‖v2‖ (in which case we say it is
bounded).

We will use the notationB(V1, V2;W ) for the space of continuous (bounded)
bilinear maps. This space has a norm given by

|b| := sup
(v1,v2)∈V1×V2

‖b(v1, v2)‖
‖v1‖‖v2‖

b 10.7. Show that the map φ : B(V1, V2;W ) → B(V1, B(V2,W )) defined
by φ(b)(v1) := b(v1, ·) : V1 → W is a linear homeomorphism.
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b 10.8. Extend the previous result to show that

B(V1, . . . , Vk;W ) ∼= B(V1, . . . B(Vk−1, B(Vk,W )) . . .)

where B(V1, . . . , Vk;W ) is the space of continuous multilinear maps.

Definition 10.9. Let f : U ⊂ E → F be a differentiable function and define
the map Df : U → B(E,F ) by x 7→ Df(x). If Df is a continuous map
then we say that f is continuously di�erentiable or of class C1. If Df is also
continuously differentiable, i.e. D2f := D(Df) : U → B(E,B(E,F )) =
B(E,E;F ) is continuous, then we say f is of class C2. If Dkf : U →
B(E, . . . E;F ) (defined recursively) exists and is continuous then f is of class
Ck, and if Dkf exists and is continuous for all k ≥ 1 then f is called C∞ or
smooth.

When E = Rn and F = Rm the above definition of Ck is equivalent to
requiring (as in lectures) that all partial derivatives up to order k exist and
are continuous. We will not give a proof here, but the basic idea is the same
as in the proof of Theorem 9.8:

b 10.10. Let ei, i = 1, . . . n be the standard basis vectors in Rn. Show that
if f : Rn → Rm is C1 then (D2f(x)(ei, ej))k = ∂i∂jf

k(x) for all k = 1 . . .m.
(Here fk is the kth component function of f and (D2f(x)(ei, ej))k is the kth
component of D2f(x)(ei, ej) ∈ Rm.)

10.2 INVERSE FUNCTION THEOREM

Recall the Newton-Raphson (NR) method for solving f(x) = 0 for x where
f : R → R is a differentiable function: guess x0, hopefully f ′(x0) 6= 0,

calculate x1 = x0 − f(x0)
f ′(x0)

, then iterate xn+1 = xn − f(xn)
f ′(xn)

, and hopefully we

find that |xn+1 − xn| → 0 (there is a nice animation on wikipedia). Suppose
instead we want to find an inverse for f , i.e. for a given y0 we want to solve
f(x) = y0. Then we can simply apply the NR-method to f(x) − y0, i.e.

calculate x1 = x0 − f(x0)−y0
f ′(x0)

. . . . We write

Fy0(x) = x− f(x)− y0

f ′(x)

so that xn = Fy0(xn−1), and convergence of the NR method is equivalent to
convergence of successive iterations of Fy0 , which calls to mind the Banach
fixed point theorem. For f : R→ R the inverse function theorem says that if
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f ′(a) 6= 0, x is sufficiently close to a, and y is sufficiently close to f(a), then
this process converges and gives an inverse for each y sufficiently close to a.
Briefly, we say that f is locally invertible in a neighbourhood of a.

a b

f(a)

Figure 4: f ′(a) 6= 0 so there is a neighbourhood of a which is mapped
bijectively to a neighbourhood of f(a). Notice that f will not be invertible
in any neighbourhood of b.

We are going to prove the inverse function theorem for differentiable maps
f : Rn → Rn. The basic idea is the same as above but dividing by f ′(x)
no longer makes sense. We will need to use Df(x)−1 instead, and replace
the condition f ′(a) 6= 0 with “Df(a) is invertible”. First some preliminary
results.

Lemma 10.11. (Mean value inequality) Let f : U ⊂ Rn → Rm be a C1

function, and V ⊂ U a convex subset such that supx∈V |Df(x)| exists. Then
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for all x1, x2 ∈ V

‖f(x1)− f(x2)‖ ≤ sup
x∈V
|Df(x)|‖x1 − x2‖

Proof. Since V is convex the path σ(t) := tx1 + (1 − t)x2 is in V . By the
chain rule

d

dt
f(σ(t)) = Df(σ(t))

dσ

dt
= Df(σ(t)(x1 − x2)

Integrating with respect to t:

f(x1)− f(x2) =

∫ 1

0

Df(σ(t))(x1 − x2)

therefore

‖f(x1)− f(x2)‖ ≤ ‖
∫ 1

0

Df(σ(t))(x1 − x2)dt‖

≤
∫ 1

0

‖Df(σ(t))(x1 − x2)‖dt

≤
∫ 1

0

|Df(σ(t))|‖x1 − x2‖dt

≤ sup
x∈V
|Df(x)|‖x1 − x2‖

Corollary 10.12. For any a ∈ V

‖f(x1)− f(x2)−Df(a)(x1 − x2)‖ ≤ sup
x∈V
|Df(x)−Df(a)|‖x1 − x2‖

Proof. Apply Lemma 10.11 to the function g(x) := f(x)−Df(a)x.

Theorem 10.13. (Inverse function theorem) Let f : U ⊂ Rn → Rn be a Ck

function. If for some a ∈ U we have that Df(a) is invertible, then there is
an open set V ⊂ U containing a such that the restriction f |V → f(V ) ⊂ Rn

has a Ck inverse g : f(V )→ V , and Dg(f(x)) = (Df(x))−1.

Proof. Write y0 = f(a), λ = Df(a) and define Fy0 : U → Rn by

Fy0(x) := x− λ−1(f(x)− y0)
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We will prove that Fy0 is a contraction map (on a subset of U). For x1, x2 ∈ U

Fy0(x1)− Fy0(x2) = x1 − x2 − λ−1(f(x1)− f(x2))

= λ−1(λ(x1 − x2)− f(x1) + f(x2))

Since U is open there exists an open ball at a contained in U , and then any
closed ball Bδ1(a) with smaller radius is compact, convex and contained in U .
Then by exercise 8.6 |Df(x)| is bounded for x ∈ Bδ1(a), and using Corollary
10.12, for x1, x2 ∈ Bδ1(a)

‖Fy0(x1)− Fy0(x2)‖ ≤ |λ−1| sup
x∈Bδ1 (a)

|Df(x)−Df(a)|‖x1 − x2‖

By continuity of Df , there exists δ2 > 0 such that if |x − a| < δ2 then
|Df(x)−Df(a)| < 1

2|λ−1| (the reason for this particular choice of bound will

become clear later). Therefore if x1, x2 ∈ Bδ1(a) ∩Bδ2(a) then

‖Fy0(x1)− Fy0(x2)‖ < 1
2
‖x1 − x2‖ (18)

i.e. Fy0 is Lipschitz with constant < 1. Let δ < min{δ1, δ2}, then Fy0 is
Lipschitz on the closed ball Bδ(a), which is complete. In order to apply the
Banach fixed point theorem it remains to show Fy0(Bδ(a)) ⊂ Bδ(a). For this
note that

Fy0(a) = a− λ−1(f(a)− f(a)) = a

and therefore from (18) ‖Fy0(x) − a‖ < 1
2
‖x − a‖, which shows that if x ∈

Bδ(a) then Fy0(x) ∈ Bδ(a). Now by the Banach fixed point theorem Fy0 has
a unique fixed point in Bδ(a). Let γ = δ

2|λ−1| and for any y ∈ Bγ(y0) define

Fy(x) := x− λ−1(f(x)− y).

Applying the same argument as for y0 we have the Lipschitz property

‖Fy(x1)− Fy(x2)‖ < 1
2
‖x1 − x2‖

for all x1, x2 ∈ Bδ(a). To show Fy(Bδ(a)) ⊂ Bδ(a) note that

Fy(a)− a = a− λ−1(f(a)− y)− a = λ−1(y − y0)

hence

Fy(x)− a = Fy(x)− Fy(a) + Fy(a)− a
= Fy(x)− Fy(a) + λ−1(y − y0)
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and therefore for x ∈ Bδ(a) and y ∈ Bγ(y0)

‖Fy(x)− a‖ ≤ ‖Fy(x)− Fy(a)‖+ |λ−1|‖y − y0‖

≤ 1

2
‖x− a‖+

δ

2
≤ δ

by the Lipschitz property for Fy and the choice of γ. So Fy(x) is a contraction
mapping and has a unique fixed point. We define g : Bγ(y0) → Bδ(a)
by y 7→ (unique fixed point of Fy), i.e. Fy(g(y)) = g(y). It follows that
g(y) = g(y)− λ−1(f(g(y))− y), and then f(g(y)) = y. Moreover

Ff(x)(x) = x− λ−1(f(x)− f(x)) = x

so x is the fixed point of Ff(x), which means g(f(x)) = x. Thus g is the
inverse of f |Bδ(a). Continuity of g:

‖g(y1)− g(y2)‖ = ‖Fy1(g(y1))− Fy2(g(y2))‖
≤ ‖Fy1(g(y1))− Fy1(g(y2))‖+ ‖Fy1(g(y2))− Fy2(g(y2))‖

≤ 1

2
‖g(y1)− g(y2)‖+ ‖λ−1(y1 − y2)‖

rearranging gives:

‖g(y1)− g(y2)‖ ≤ 2|λ−1|‖y1 − y2‖

so g is Lipschitz and therefore continuous.
Now we prove g is differentiable. Note that since Df is continuous,

Df(a) ∈ GL(n,R), and GL(n,R) is open in L(Rn,Rn) = M(n × n,R) (see
Week 10 worksheet), there is an open set U ′ ⊂ U such thatDf(x) ∈ GL(n,R)
for all x ∈ U ′. So we set V = Bδ(a) ∩ U ′ and W = f(V ) ⊂ Bγ(y0), and then
for all y ∈ W we have that Df(g(y)) is invertible.

Now for y ∈ W let k = g(y+h)−g(y) with h sufficiently small so that k is
well defined. Then limh→0 k = 0 (continuity of g) and h = f(k+ g(y))− y =
f(k + g(y))− f(g(y)). Letting Λ = Df(g(y))

‖g(y + h)− g(y)− Λ−1h‖
‖h‖

=
‖Λ−1(Λk − h)‖

‖h‖

=
‖Λ−1(Λk − f(k + g(y))− f(g(y))‖

‖h‖

≤ 2|λ−1||Λ−1|‖f(k + g(y))− f(g(y))− Λk‖
‖k‖
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where we have used ‖k‖ = ‖g(y + h)− g(y) ≤ K‖h‖ (Lipschitz property for
g). The squeeze theorem gives

lim
h→0

‖g(y + h)− g(y)− Λ−1h‖
‖h‖

= 0

which shows that Dg(y) = Λ−1 = Df(g(y))−1. This means Dg : Bγ(y0) →
L(Rn,Rn) can be decomposed as

Dg = Inv ◦Df ◦ g : Bγ(y0)→ Bδ(a)→ GL(n,R)→ GL(n,R).

Here Inv : GL(n,R) → GL(n,R) denotes matrix inversion, which we claim
is a smooth map. So Dg is a composition of continuous functions, therefore
continuous, and g is C1. By repeated applications of the chain rule it follows
that g is Ck.

b 10.14. Prove that matrix inversion GL(n,R) → GL(n,R) is a smooth
map.

Remarks.

The identification L(Rn,Rn) = M(n× n,R) depends on a choice of basis
for Rn. Usually we mean to use the standard basis on Rn, but it doesn’t
actually matter for the above proof.

The inverse function theorem can be extended to maps between Banach
spaces, but it takes a bit more work. For example, in order to generalise
the mean value inequality we need to know how to integrate over a path in
Banach space.
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11 WEEK 12

b 11.1. Show that a linear map A is injective if and only if kerA := {x :
Ax = 0} = {0}.

Lemma 11.2. Let V be an r-dimensional subspace of Rn. Then Rn ∼=
V ⊕V ⊥, the dimension of V ⊥ is n− r, and for any x ∈ Rn there exist unique
y ∈ V and z ∈ V ⊥ such that x = y + z.

Proof. V is a finite dimensional vector space so it has a basis {v1, . . . vr}
where r is the dimension of V . We can assume this basis is orthonor-
mal (by Gram-Schmidt 6.5), and can extend it to an orthonormal basis
{v1, . . . vr, wr+1, . . . wn} for Rn (choose a vector not in the span of vi, or-
thonormalise, repeat if possible). So any x ∈ Rn can be written as a linear
combination

x =
r∑
i=1

xivi +
n∑

j=r+1

xjwj (19)

where xi = x · vi for i = 1, . . . , r and xj = x · wj (we emphasize that here xi

does not mean the ith component of x in the standard basis).
Suppose z =

∑r
i=1 z

ivi +
∑n

j=r+1 z
jwj is in V ⊥, then zi = z · vi = 0 for

i = 1, . . . r, so {wr+1 . . . wn} is a basis for V ⊥, which therefore has dimension
n− r. Define projections πV : Rn → V and π⊥ : Rn → V ⊥ by

πV (x) :=
r∑
i=1

xivi π⊥(x) =
n∑

j=r+1

xjwj

Then (πV , π⊥) : Rn → V ⊕V ⊥ is an isomorphism with inverse (y, z) 7→ y+ z
(for example, check injectivity: (πV , π⊥)x = (0, 0) iff xi = 0 for all i =
1, . . . , n iff x = 0, we leave the other properties as an exercise). Moreover,
observe that setting y = πV x and z = π⊥x gives the decomposition x =
y + z. If this decomposition is not unique, then (19) is not unique and
{v1, . . . vr, wr+1, . . . wn} is not a basis.

There is an isomorphism V ∼= Rr given by mapping y to its coefficients
(y1, . . . , yr) with respect to the basis {v1, . . . , vr}, or perhaps more precisely:
mapping each vi 7→ ei to the standard basis vector and extending linearly
(compare exercise 1.12). Similarly V ⊥ ∼= Rn−r, and so V ⊕V ⊥ ∼= Rn⊕Rn−r =
Rn. From this point of view the above lemma can be rephrased as:
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Corollary 11.3. There is an isomorphism (a.k.a. change of basis) T : Rn →
Rn = Rn−m ⊕ Rm such that T (V ) = Rn−m ⊕ {0} and T (V ⊥) = {0} ⊕ Rm.

Lemma 11.4. (Splitting lemma) Let A : Rn → Rm be a surjective linear
map and let K = kerA. Then there exists an isomorphism Φ such that the
following diagram commutes:

Rn Rm

K ⊕ Rm

A

Φ pr2

meaning A = pr2 ◦Φ, where pr2(a, b) := b.

Proof. The kernel of a linear map is a subspace so by the previous lemma
there exist projections πK , π⊥ such that (πK , π⊥) : Rn ∼= K ⊕K⊥. We will
prove that A|K⊥ → Rm is an isomorphism. Suppose v ∈ K⊥ and Av = 0.
Then V ∈ K⊥ ∩K = {0} and v = 0, so A|K⊥ is injective. For surjectivity:
let w ∈ Rm, then since A is surjective there exists x ∈ Rn such that Ax = w.
By the previous lemma x = πKx+ π⊥x so

w = Ax = A(πKx+ π⊥x) = 0 + Aπ⊥x

and π⊥x ∈ K⊥ so A|K⊥ is surjective. We therefore define Φ : Rn → K ⊕Rm

by
Φ := (Id, A|K⊥) ◦ (πK , π⊥) = (πK , A)

Φ is a composition of isomorphisms, therefore itself an isomorphism, and
Ax = A(πKx+ π⊥x) = Aπ⊥x = pr2 Φx, so the diagram commutes.

Notice that we have also proved the rank-nullity theorem, because by
Lemma 11.2 the dimension of K is n−m.

Suppose now that f : Rn → Rm is a smooth map such that Df(x) : Rn →
Rm is surjective. Then by the splitting lemma there is an isomorphism Φ
such that

Rn Rm

kerDf(x)⊕ Rm

Df(x)

Φ pr2

By the Linearisation Dogma we expect to be able to prove something similar
for f , at least locally.
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Proposition 11.5. If f : Rn → Rm is a smooth map and Df(x) is surjective,
then there exists an open subset U ⊂ Rn containing x, open subsets U1 ⊂
Rn−m, U2 ⊂ Rm, and a diffeomorphism φ : U → U1 × U2 such that the
following diagram commutes:

U Rm

U1 × U2

f |U

φ
pr2

Proof. Let K = kerDf(x) and Define F := (πK , f) : Rn → K ⊕ Rm. Then
by properties 9.6 of the derivative DF (x) = (πK , Df(x)), which is an iso-
morphism by the splitting lemma. By the inverse function theorem 10.13
there exists an open set U ⊂ Rn such that F |U → F (U) is a diffeomorphism.
By definition of the product topology F (U) contains an open set of the form
U1 × U2, so we let U = F−1(U1 × U2) and define φ := F |U = (πK , f)|U , so
pr2 ◦φ = f |U .

Theorem 11.6. Let f : Rn → Rm be smooth and suppose a ∈ Rm is a
regular value of f , i.e. Df(x) is surjective for every x ∈ f−1(a). Then f−1(a)
is an (n−m)-dimensional submanifold of Rn.

Proof. Given x ∈ f−1(a) we have Df(x) surjective and therefore by the
previous proposition there are open sets U,U1, U2 and a diffeomorphism φ :
U → U1 × U2 such that pr2 ◦φ = f . We give f−1(a) the subspace topology
so that f−1(a) ∩ U is open in f−1(a). Moreover, for all x ∈ f−1(a) ∩ U we
have a = f(x) = pr2 ◦φ(x) and therefore φ(x) = (x1, a) for some x1 ∈ U1.
We claim that φ̃ := pr1 ◦φ|f−1(a) ∩ U → U1 is a homemorphism:

f−1(a) ∩ U

U1 × U2 U1

φ
φ̃

pr1

- both φ, pr1 are continuous, so the restriction is continuous in the sub-
space topology

- the inverse u 7→ φ−1(u, a) is also continuous: suppose W ⊂ f−1(a) ∩ U
is open, then φ(W ) = W1 × {a} is open in U1 × {a} because φ−1 is
continuous, and therefore W1 is open in U1.
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So for any x ∈ f−1(a) we have a chart (φ̃, f−1(a)∩U) for f−1(a) which con-
tains x. It remains to show that overlapping charts are compatible. Suppose
we have another chart (γ̃, f−1(a) ∩ V ) by

f−1(a) ∩ V

V1 × V2 V1

γ γ̃

pr1

which is such that W := f−1(a) ∩ U ∩ V 6= ∅. Consider γ̃ ◦ φ̃−1 : φ̃(W ) ⊂
U1 → V1. For u ∈ φ̃(W ) we have

γ̃ ◦ φ̃−1(u) = pr1 ◦γ ◦ φ−1(u, a)

so D(γ̃ ◦ φ̃)(u) is a partial derivative of pr1 ◦γ ◦ φ−1. But γ and φ are
diffeomorphisms and pr1 is linear so the composition is smooth, and so is
the partial derivative.

Example 11.7. The n-sphere Sn := {x ∈ Rn + 1 : ‖x‖ = 1} is a submanifold
of Rn+1. The function f : Rn+1\{0} → R defined by f(x) := ‖x‖2 has 1 as a
regular value and Sn = f−1(1). To see that 1 is a regular value we calculate
the derivative of f :

Df(x)v = d
dt

∣∣
t=0

f(x+ tv) = d
dt

∣∣
t=0
‖x+ tv‖2

= d
dt

∣∣
t=0

(x+ tv) · (x+ tv)

= d
dt

∣∣
t=0

(x · x+ 2tx · v + t2v · v)

= 2x · v

Observe that for x 6= 0 we have Df(x) surjective: given w ∈ R let v =
wx/2‖x‖2. So in fact every positive real number is a regular value of f .
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