MAT100 Multivariable Calculus
Vector valued functions of one variable
A vector valued function of one variable is a function
\[\begin{align*} \mathbf r:D&\to\mathbb R^n\\ t &\mapsto \mathbf r(t)=(r_1(t),r_2(t),\ldots, r_n(t) ) \end{align*}\]Where \(D\subset \mathbb R\).
Typical application:
- \(t\) represents time,
- \(\mathbf r(t)\) the position of an object at time \(t\).
We can visualise such functions using parametric plots : plot the point \(\mathbf r(t)\) for each value of \(t\).
Examples
\[\mathbf r:[0,1]\to \mathbb R^2, \quad \mathbf r(t)=(1+t,t)=(1,0)+t(1,1)\]\[c:[0,2\pi]\to \mathbf R^2,\quad \mathbf c(t)=(\cos(t),\sin(t))\]
\[c:[0,1]\to \mathbf R^2,\quad \mathbf c(t)=(\cos(2\pi t),\sin(2\pi t))\]
\[\mathbf r:[0,4\pi]\to\mathbb R^3,\quad \mathbf r(t)=(\cos t,\sin t,t )\]